Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Mater ; 36(11): 5814-5825, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38883435

ABSTRACT

Metal-organic frameworks (MOFs) have settled in the scientific community over the last decades as versatile materials with several applications. Among those, zeolitic imidazolate framework 8 (ZIF-8) is a well-known MOF that has been applied in various and diverse fields, from drug-delivery platforms to microelectronics. However, the complex role played by the reaction parameters in controlling the size and morphology of ZIF-8 particles is still not fully understood. Even further, many individual reports propose different nucleation and growth mechanisms for ZIF-8, thus creating a fragmented view for the behavior of the system. To provide a unified view, we have generated a comprehensive data set of synthetic conditions and their final outputs and applied machine learning techniques to analyze the data. Our approach has enabled us to identify the nucleation and growth mechanisms operating for ZIF-8 in a given sub-space of synthetic variables space (chemical space) and to reveal their impact on important features such as final particle size and morphology. By doing so, we draw connections and establish a hierarchy for the role of each synthetic variable and provide with rule of thumb for attaining control on the final particle size. Our results provide a unified roadmap for the nucleation and growth mechanisms of ZIF-8 in agreement with mainstream reported trends, which can guide the rational design of ZIF-8 particles which ultimately determine their suitability for any given targeted application. Altogether, our work represents a step forward in seeking control of the properties of MOFs through a deeper understanding of the rationale behind the synthesis procedures employed for their synthesis.

2.
ACS Omega ; 5(43): 28027-28036, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33163785

ABSTRACT

The role played by oxygen vacancies and rare earth (RE) elements in the anatase-to-rutile (A-R) phase transformation of titanium dioxide (TiO2) is still a matter of controversy. Here, we report the A-R transformation of TiO2 thin solid films as obtained by ion beam sputtering a RE-decorated titanium target in an oxygen-rich atmosphere. The samples correspond to undoped, single-doped (Sm, Tm, and Tb), and codoped (Sm:Tb, Sm:Tm, and Sm:Tb:Tm) TiO2 films. In the as-prepared form, the films are amorphous and contain ∼0.5 at. % of each RE. The structural modifications of the TiO2 films due to the RE elements and the annealing treatments in an oxygen atmosphere are described according to the experimental results provided by Raman scattering, X-ray photoelectron spectroscopy, and optical measurements. The A-R transformation depends on both the annealing temperature and the characteristics of the undoped, single-doped, and codoped TiO2 films. As reported in the literature, the A-R transformation can be inhibited or enhanced by the presence of impurities and is mostly related to energetic contributions. The experimental results were analyzed, considering the essential and stabilizing role of the entropy of mixing in the A-R transformation due to the introduction of more and multiple quantum states originated in vacancies and impurities in the anatase phase.

3.
Nanoscale Adv ; 1(9): 3499-3505, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133566

ABSTRACT

Semiconductor nanoparticles (SNPs) are excellent candidates for various applications in fields like solar cells, light emitting diodes or sensors. Their size strongly determines their properties, thus characterizing their size is crucial for applications. In most cases, they are included in complex matrices which make it difficult to determine their average diameter and statistical distribution. In this work, we present a non-destructive, cheap and in situ procedure to calculate particle size distributions (PSDs) of SNPs in different media based on deconvolution of the absorbance spectrum with a database of the absorbance spectra of SNPs with different sizes. The method was validated against the SNP sizes obtained from transmission microscopy images, showing excellent agreement between both distributions. In particular, CdS SNPs embedded in mesoporous thin films were analyzed in detail. Additional composite systems were studied in order to extend the method to SNPs in polymers or bacteria, proving that it applies to several SNPs in diverse matrices. The PSDs obtained from the proposed method do not show any statistical difference with the one derived from TEM images. Finally, a web app that implements the methodology of this work has been developed.

4.
Sci Total Environ ; 565: 804-810, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27157896

ABSTRACT

Cadmium contained in soil and water can be taken up by certain crops and aquatic organisms and accumulate in the food-chain, thus removal of Cd from mining or industrial effluents - i.e. Ni-Cd batteries, electroplating, pigments, fertilizers - becomes mandatory for human health. In parallel, there is an increased interest in the production of luminescent Q-dots for applications in bioimaging, sensors and electronic devices, even the present synthesis methods are economic and environmentally costly. An alternative green pathway for producing Metal chalcogenides (MC: CdS, CdSe, CdTe) nanocrystals is based on the metabolic activity of living organisms. Intracellular and extracellular biosynthesis of can be achieved within a biomimetic approach feeding living organisms with Cd precursors providing new routes for combining bioremediation with green routes for producing MC nanoparticles. In this mini-review we present the state-of-the-art of biosynthesis of MC nanoparticles with a critical discussion of parameters involved and protocols. Few existing examples of scaling-up are also discussed. A modular reactor based on microorganisms entrapped in biocompatible mineral matrices - already proven for bioremediation of dissolved dyes - is proposed for combining both Cd-depletion and MC nanoparticle's production.


Subject(s)
Bacteria/metabolism , Chalcogens/metabolism , Environmental Restoration and Remediation/methods , Fungi/metabolism , Metal Nanoparticles/chemistry , Microalgae/metabolism , Biodegradation, Environmental , Cadmium/chemistry , Luminescence , Quantum Dots , Yeasts/metabolism
5.
Environ Sci Pollut Res Int ; 23(1): 9-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26201654

ABSTRACT

Anthropic activities generate contaminants, as pesticides and other pollutants, in the aquatic environment which present a real threat to ecosystems and human health. Thus, monitoring tools become essential for water managers to detect these chemicals before the occurrence of adverse effects. In this aim, algal cell biosensors, based on photosystem II activity measurement, have been designed for several years in previous studies. In this work, we study a new immobilization technique of algal cells in the aim of improving the performance of these biosensors. Immobilization was here achieved by encapsulation in a hybrid alginate/silica translucid hydrogel. The feasibility of this process was here assessed, and the biosensor designed was tested on the detection of chemicals in urban rainwaters.


Subject(s)
Biosensing Techniques , Environmental Monitoring/methods , Hydrogel, Polyethylene Glycol Dimethacrylate , Biosensing Techniques/methods , Cells, Immobilized , Ecosystem , Feasibility Studies , Humans , Pesticides/analysis , Water Pollutants, Chemical/analysis , Water Supply
6.
J Mater Chem B ; 3(16): 3189-3194, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-32262312

ABSTRACT

As an alternative approach to the well known Ca(ii)-alginate encapsulation process within silica hydrogels, proton-driven alginate gelation was investigated in order to establish its capacity as a culture carrier, both isolated and embedded in an inorganic matrix. Control over the velocity of the proton-gelation front allows the formation of a hydrogel shell while the core remains liquid, allowing bacteria and microalgae to survive the strongly acidic encapsulation process. Once inside the inorganic host, synthesized by a sol-gel process, the capsules spontaneously redissolve without the aid of external complexing agents. The entrapped cells survive the two-step process to a significant extent; culture's growth restores the initial cell count in less than two weeks. Biosynthesis of Au nanoparticles mediated by the entrapped microalgae illustrates the preservation of the biosynthetic abilities supported by this platform.

7.
J Biotechnol ; 184: 94-9, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-24862196

ABSTRACT

An advanced encapsulation matrix that efficiently protects microalgae from harmful UV light without causing toxicity to the entrapped culture is developed based on the electrostatic adsorption of the dye Rhodamine B on silica preformed particles during sol-gel synthesis. The three microalgae (Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii) were previously immobilized in alginate following the Two-step procedure. Once entrapped in the silica gel, Rhodamine B act as an inner cut-off filter, protecting the encapsulated organisms from UV radiation. This matrix allows the sterilization of encapsulation devices without affecting the viability of the entrapped microalgae cells. The condensation of Si(IV) in the presence of silica particles with adsorbed dye generates silica matrices with good mechanical stability. Furthermore; no appreciable differences in microstructure, as assessed by SAXS (Small Angle X-ray Scattering), are caused by the addition of the dye.


Subject(s)
Chlamydomonas reinhardtii/drug effects , Chlorella vulgaris/drug effects , Photosynthesis/drug effects , Rhodamines/pharmacology , Chlamydomonas reinhardtii/radiation effects , Chlorella vulgaris/radiation effects , Phase Transition , Photosynthesis/radiation effects , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Ultraviolet Rays
8.
J Colloid Interface Sci ; 425: 91-5, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24776668

ABSTRACT

The fine tuning of porosity in sol gel based devices makes possible the design of novel applications in which the transport of molecules through the oxide gel plays a crucial role. In this work we develop a new method for the simultaneous analysis of diffusion and adsorption of small diffusing probes, as anionic and cationic dyes, through silica mesoporous hydrogels synthesized by sol-gel. The novelty of the work resides in the simplicity of acquisition of the experimental data (by means of a desk scanner) and further mathematical modeling, which is in line with high throughput screening procedures, enabling rapid and simultaneous determination of relevant diffusion and adsorption parameters. Net mass transport and adsorption properties of the silica based hydrogels were contrasted to dye adsorption isotherms and textural characterization of the wet gels by SAXS, as well as that of the corresponding aerogels determined by Field Emission Scanning Electron Microscopy (FESEM) and N2 adsorption. Thus, the validation of the results with well-established characterization methods demonstrates that our approach is robust enough to give reliable physicochemical information on these systems.

9.
ACS Appl Mater Interfaces ; 6(7): 5263-72, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24621107

ABSTRACT

We introduce a nanoparticle-mesoporous oxide thin film composite (NP-MOTF) as low-cost and straightforward sensing platforms for surface-enhanced Raman Spectroscopy (SERS). Titania, zirconia, and silica mesoporous matrices templated with Pluronics F-127 were synthesized via evaporation-induced self-assembly and loaded with homogeneously dispersed Ag nanoparticles by soft reduction or photoreduction. Both methods give rise to uniform and reproducible Raman signals using 4-mercaptopyridine as a probe molecule. Details on stability and reproducibility of the Raman enhancement are discussed. Extensions in the design of these composite structures were explored including detection of nonthiolated molecules, such as rhodamine 6-G or salicylic acid, patterning techniques for locating the enhancement regions and bilayered mesoporous structures to provide additional control on the environment, and potential size-selective filtration. These inorganic oxide-metal composites stand as extremely simple, reproducible, and versatile platforms for Raman spectroscopy analysis.

10.
J Biotechnol ; 179: 65-70, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24637376

ABSTRACT

An advanced hybrid biosensing platform with improved optical quality is developed based on the acidic encapsulation of microalgi in silica matrices synthesized by TAFR (tetraethoxysilane derived alcohol free route). The three microalgi (Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii) were previously immobilized in alginate following the two-step procedure. Tuning the alginate protecting function with the aid of Tris-HCl buffer, the sol-gel synthesis was conducted at pH 4.0 well below the tolerance limit imposed by the encapsulated microalgae. The acidic condensation of Si(IV) generates silica matrices with outstanding optical properties that suit the requirements of biosensors based on optical detection methods.


Subject(s)
Biosensing Techniques/methods , Microalgae/chemistry , Silica Gel/chemistry , Alginates/chemistry , Esterases/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Microalgae/enzymology , Scattering, Small Angle , Water Pollutants, Chemical/isolation & purification , X-Ray Diffraction
11.
Biotechnol Rep (Amst) ; 4: 147-150, 2014 Dec.
Article in English | MEDLINE | ID: mdl-28626674

ABSTRACT

We report on the first silica encapsulation of a metazoan (Daphnia magna), with a high initial viability (96% of the population remained active 48 h after encapsulation). Moreover, the co-encapsulation of this crustacean and microalgae (Pseudokirchneriella subcapitata) was achieved, creating inside a silica monolith, the smallest microcosm developed to present. This artificial ecosystem in a greatly diminished scale isolated inside a silica nanoporous matrix could have applications in environmental monitoring, allowing ecotoxicity studies to be carried out in portable devices for on-line and in situ pollution level assessment.

12.
Sensors (Basel) ; 12(12): 16879-91, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23223083

ABSTRACT

A new biosensor was designed for the assessment of aquatic environment quality. Three microalgae were used as toxicity bioindicators: Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. These microalgae were immobilized in alginate and silica hydrogels in a two step procedure. After studying the growth rate of entrapped cells, chlorophyll fluorescence was measured after exposure to (3-(3,4-dichlorophenyl)-1,1-dimethylurea) (DCMU) and various concentrations of the common herbicide atrazine. Microalgae are very sensitive to herbicides and detection of fluorescence enhancement with very good efficiency was realized. The best detection limit was 0.1 µM, obtained with the strain C. reinhardtii after 40 minutes of exposure.


Subject(s)
Biosensing Techniques/instrumentation , Environmental Monitoring , Microalgae/chemistry , Water Pollutants, Chemical/isolation & purification , Atrazine/isolation & purification , Chlamydomonas reinhardtii/chemistry , Chlorella vulgaris/chemistry , Diuron/isolation & purification , Fresh Water , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry
13.
J Biotechnol ; 127(3): 542-8, 2007 Jan 10.
Article in English | MEDLINE | ID: mdl-16949175

ABSTRACT

In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.


Subject(s)
Cell Culture Techniques , Cell Proliferation , Nicotiana/cytology , Phloem/cytology , Silicon Dioxide , Cells, Immobilized/cytology
14.
Langmuir ; 20(16): 6879-86, 2004 Aug 03.
Article in English | MEDLINE | ID: mdl-15274599

ABSTRACT

An interconnected Au nanoparticle arrangement is obtained by electrodeposition from Au(III) soluble complexes within the pore system of block-copolymer templated mesoporous titania films. The resulting Au@TiO2 nanocomposites (5 nm Au particles, 5.5 nm amorphous titania walls) have the electrochemical behavior of a gold electrode of high surface area. The attenuation of Au surface plasmon due to -OH electroadsorption and the existence of mixed localized states in these Au@TiO2 nanocomposites are observed by in situ spectroelectrochemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...