Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 620(7973): 393-401, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407818

ABSTRACT

Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.


Subject(s)
Cytidine Deaminase , Lung Neoplasms , Humans , Cytidine Deaminase/deficiency , Cytidine Deaminase/drug effects , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA Breaks, Double-Stranded , Genomic Instability , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Targeted Therapy , Mutation , Drug Resistance, Neoplasm
2.
Ann Thorac Surg ; 116(1): 181-188, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36376135

ABSTRACT

BACKGROUND: Drug-loaded meshes offer a promising delivery strategy for the prevention of local recurrence. Patient-derived xenograft (PDX) models are representative of individual patient tumors and predictive of clinical outcomes. METHODS: A PDX model was established in NSG (NOD-scid IL2Rgammanull) mice using tumor tissue from a patient with aggressive lung adenocarcinoma. Polyglycolic acid (PGA) meshes loaded with paclitaxel (PGA+PTX) were electrospun. Tumor-bearing mice were randomized into 4 groups after macroscopic complete resection: (1) no treatment (n = 10); (2) intraperitoneal PTX at 20 mg/kg (n = 10); (3) PGA mesh without drug (n = 14); and (4) PGA+PTX mesh at 12 mg/kg (n = 14). A 1-cm2 mesh was placed onto the tumor resection beds. Groups were observed for local recurrence for 120 postoperative days. RESULTS: PDX mice treated with PGA+PTX meshes after resection exhibited a >5-fold increase in recurrence-free survival (P < .0001) compared with systemically treated and untreated control groups. Median recurrence-free survival was 24 days for untreated and intraperitoneal PTX groups, 28 days for unloaded PGA mesh group, and undefined for the PGA+PTX mesh group. CONCLUSIONS: Development of a PDX surgical resection model of non-small cell lung cancer permits robust assessment of postresection local recurrence for preclinical studies of patient-derived tumors. Intraoperative placement of drug-loaded meshes demonstrates superior local disease treatment, suggesting that this approach may improve recurrence-free survival in early-stage non-small cell lung cancer patients undergoing limited resection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Paclitaxel/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/drug therapy , Lung Neoplasms/surgery , Surgical Mesh , Heterografts , Porosity , Mice, Inbred NOD , Disease Models, Animal , Cell Line, Tumor
3.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33561010

ABSTRACT

BACKGROUNDCirculating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA may represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples.METHODSA CRISPR-augmented RT-PCR assay that sensitively detects SARS-CoV-2 RNA was employed to analyze viral RNA kinetics in longitudinal plasma samples from nonhuman primates (NHPs) after virus exposure; to evaluate the utility of blood SARS-CoV-2 RNA detection for coronavirus disease 2019 (COVID-19) diagnosis in adults cases confirmed by nasal/nasopharyngeal swab RT-PCR results; and to identify suspected COVID-19 cases in pediatric and at-risk adult populations with negative nasal swab RT-qPCR results. All blood samples were analyzed by RT-qPCR to allow direct comparisons.RESULTSCRISPR-augmented RT-PCR consistently detected SARS-CoV-2 RNA in the plasma of experimentally infected NHPs from 1 to 28 days after infection, and these increases preceded and correlated with rectal swab viral RNA increases. In a patient cohort (n = 159), this blood-based assay demonstrated 91.2% diagnostic sensitivity and 99.2% diagnostic specificity versus a comparator RT-qPCR nasal/nasopharyngeal test, whereas RT-qPCR exhibited 44.1% diagnostic sensitivity and 100% specificity for the same blood samples. This CRISPR-augmented RT-PCR assay also accurately identified patients with COVID-19 using one or more negative nasal swab RT-qPCR results.CONCLUSIONResults of this study indicate that sensitive detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR permits accurate COVID-19 diagnosis, and can detect COVID-19 cases with transient or negative nasal swab RT-qPCR results, suggesting that this approach could improve COVID-19 diagnosis and the evaluation of SARS-CoV-2 infection clearance, and predict the severity of infection.TRIAL REGISTRATIONClinicalTrials.gov. NCT04358211.FUNDINGDepartment of Defense, National Institute of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the National Center for Research Resources.


Subject(s)
COVID-19/blood , COVID-19/virology , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , RNA, Viral/blood , RNA, Viral/genetics , SARS-CoV-2 , Adolescent , Adult , Aged , Animals , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/statistics & numerical data , CRISPR-Cas Systems , Child , Child, Preschool , Disease Models, Animal , Female , Humans , Infant , Longitudinal Studies , Macaca mulatta , Male , Middle Aged , Pandemics , SARS-CoV-2/genetics , Sensitivity and Specificity , Time Factors
4.
Oncogene ; 38(37): 6399-6413, 2019 09.
Article in English | MEDLINE | ID: mdl-31324888

ABSTRACT

Evolved resistance to tyrosine kinase inhibitor (TKI)-targeted therapies remains a major clinical challenge. In epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC), failure of EGFR TKIs can result from both genetic and epigenetic mechanisms of acquired drug resistance. Widespread reports of histologic and gene expression changes consistent with an epithelial-to-mesenchymal transition (EMT) have been associated with initially surviving drug-tolerant persister cells, which can seed bona fide genetic mechanisms of resistance to EGFR TKIs. While therapeutic approaches targeting fully resistant cells, such as those harboring an EGFRT790M mutation, have been developed, a clinical strategy for preventing the emergence of persister cells remains elusive. Using mesenchymal cell lines derived from biopsies of patients who progressed on EGFR TKI as surrogates for persister populations, we performed whole-genome CRISPR screening and identified fibroblast growth factor receptor 1 (FGFR1) as the top target promoting survival of mesenchymal EGFR mutant cancers. Although numerous previous reports of FGFR signaling contributing to EGFR TKI resistance in vitro exist, the data have not yet been sufficiently compelling to instigate a clinical trial testing this hypothesis, nor has the role of FGFR in promoting the survival of persister cells been elucidated. In this study, we find that combining EGFR and FGFR inhibitors inhibited the survival and expansion of EGFR mutant drug-tolerant cells over long time periods, preventing the development of fully resistant cancers in multiple vitro models and in vivo. These results suggest that dual EGFR and FGFR blockade may be a promising clinical strategy for both preventing and overcoming EMT-associated acquired drug resistance and provide motivation for the clinical study of combined EGFR and FGFR inhibition in EGFR-mutated NSCLCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Lung Neoplasms , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , ErbB Receptors/genetics , ErbB Receptors/physiology , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Clin Cancer Res ; 25(2): 796-807, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30327306

ABSTRACT

PURPOSE: KRAS-mutant lung cancers have been recalcitrant to treatments including those targeting the MAPK pathway. Covalent inhibitors of KRAS p.G12C allele allow for direct and specific inhibition of mutant KRAS in cancer cells. However, as for other targeted therapies, the therapeutic potential of these inhibitors can be impaired by intrinsic resistance mechanisms. Therefore, combination strategies are likely needed to improve efficacy.Experimental Design: To identify strategies to maximally leverage direct KRAS inhibition we defined the response of a panel of NSCLC models bearing the KRAS G12C-activating mutation in vitro and in vivo. We used a second-generation KRAS G12C inhibitor, ARS1620 with improved bioavailability over the first generation. We analyzed KRAS downstream effectors signaling to identify mechanisms underlying differential response. To identify candidate combination strategies, we performed a high-throughput drug screening across 112 drugs in combination with ARS1620. We validated the top hits in vitro and in vivo including patient-derived xenograft models. RESULTS: Response to direct KRAS G12C inhibition was heterogeneous across models. Adaptive resistance mechanisms involving reactivation of MAPK pathway and failure to induce PI3K-AKT pathway inactivation were identified as likely resistance events. We identified several model-specific effective combinations as well as a broad-sensitizing effect of PI3K-AKT-mTOR pathway inhibitors. The G12Ci+PI3Ki combination was effective in vitro and in vivo on models resistant to single-agent ARS1620 including patient-derived xenografts models. CONCLUSIONS: Our findings suggest that signaling adaptation can in some instances limit the efficacy of ARS1620 but combination with PI3K inhibitors can overcome this resistance.


Subject(s)
Alleles , Drug Resistance, Neoplasm/genetics , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Gene Silencing , Humans , Mice , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects
6.
Cancer Discov ; 8(12): 1598-1613, 2018 12.
Article in English | MEDLINE | ID: mdl-30254092

ABSTRACT

BH3 mimetic drugs, which inhibit prosurvival BCL2 family proteins, have limited single-agent activity in solid tumor models. The potential of BH3 mimetics for these cancers may depend on their ability to potentiate the apoptotic response to chemotherapy and targeted therapies. Using a novel class of potent and selective MCL1 inhibitors, we demonstrate that concurrent MEK + MCL1 inhibition induces apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer (NSCLC) models, which respond poorly to MEK inhibition alone. Susceptibility to BH3 mimetics that target either MCL1 or BCL-xL was determined by the differential binding of proapoptotic BCL2 proteins to MCL1 or BCL-xL, respectively. The efficacy of dual MEK + MCL1 blockade was augmented by prior transient exposure to BCL-xL inhibitors, which promotes the binding of proapoptotic BCL2 proteins to MCL1. This suggests a novel strategy for integrating BH3 mimetics that target different BCL2 family proteins for KRAS-mutant NSCLC. SIGNIFICANCE: Defining the molecular basis for MCL1 versus BCL-xL dependency will be essential for effective prioritization of BH3 mimetic combination therapies in the clinic. We discover a novel strategy for integrating BCL-xL and MCL1 inhibitors to drive and subsequently exploit apoptotic dependencies of KRAS-mutant NSCLCs treated with MEK inhibitors.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , A549 Cells , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice, Knockout , Mice, Nude , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...