Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37084056

ABSTRACT

The effect of the applied potential on the crystallography, morphology, optical, and electrical properties of copper-cobalt oxide (Cu2CoO3) co-electrodeposited on ITO (Indium Tin Oxide) substrate has been studied. The electrochemical behavior of Cu2CoO3 using cyclic voltammetry showed that the co-electrodeposition of Cu2CoO3 occurred at a negative potential of - 0.70 V versus SCE, following a quasi-reversible reaction controlled by the diffusion process. Chronoamperometry (CA) revealed that the nucleation and growth mechanism of Cu2CoO3 follows the instantaneous three-dimensional process according to Scharifker and Hill model. X-ray diffraction (XRD) analysis indicated that the resulting layers at different applied potentials exhibited an orthorhombic structure with a preferred orientation of the crystallites (011) plan. The morphology of the surface changes with potential applied. Furthermore, the optical properties of the copper and cobalt oxide films were investigated using UV-visible spectroscopy; showing that the band gap energy for all the materials increases when the applied potential decreases. The Cu2CoO3 layers obtained are p-type semiconductors. The acceptor density (NA) increases with decreasing applied potential.

2.
Article in English | MEDLINE | ID: mdl-36872403

ABSTRACT

We have elaborated polyaniline films on ITO substrate (indium tin oxide), by electrochemical process in different electrolytes (HCl, H2SO4, HNO3, and H3BO3), which allowed us to study the effect of the counter ion on electrochemical energy storage performances of polyaniline as electrode material in supercapacitors. The study of the different obtained films performances was carried out by cyclic voltammetry and galvanostatic charge-discharge method and is interpreted by the SEM technique. We found that there is a clear dependence on the specific capacitance of the counter ion. Justified by its porous structure, the PANI/ITO electrode doped with SO42- has the highest specific capacitance, 57.3 mF/cm2 at a current density of 0.2 mA/cm2 and 64.8 mF/cm2 at 5 mV/s. The deep analysis by Dunn's method allowed us to conclude that the faradic process dominates the energy storage in the case of PANI/ITO electrode elaborated in boric acid (99%). On the contrary, the capacitive character is the most contributory in the case of electrodes elaborated in H2SO4, HCl, and HNO3. The study at different potentials (0.80, 0.85, 0.90, 0.95, and 1.0 V/SCE) from 0.2 M monomer aniline showed that the deposition at 0.95 V/SCE leads to higher specific capacitance (24.3 mF/cm2 at scan rate 5 mV/s and 23.6 mF/cm2 at 0.2 mA/cm2) with a coulombic efficiency of 94%. By varying the concentration of the monomer while keeping a potential fixed at 0.95 V/SCE, we also found that the specific capacitance increases with monomeric concentration.

3.
Article in English | MEDLINE | ID: mdl-36943564

ABSTRACT

The objective of this work is to study the adsorption capacity of a natural and low-cost material prepared from argan waste treated with H3PO4 towards two dyes of different molecular charges and presenting an acute toxicity, the methyl orange (MO, anionic dye) and the methylene blue (MB, cationic dye). The prepared adsorbent was characterized by SEM, EDX, FTIR, and BET specific surface. These analyses showed the presence of C (42%), O (55%), and P (3%) and a remarkable difference between the morphology of the precursor and that of the obtained material with a specific surface of 475 m2/g and a very porous structure as well as the main functional groups, O-H, C=O, and C-H. The influence of the pH showed a maximum adsorption at pH =2 for MO and at pH = 10 for MB. Investigation of the effect of time on the adsorption of anionic and cationic dyes revealed that the contact time at equilibrium was 240 and 180 min, respectively. The isotherms that best fit the adsorption of MO and MB are the Langmuir model and the Freundlich model respectively. The kinetic study showed that the experimental data are in agreement with the pseudo-second-order model. Regeneration of the saturated material was also studied for the probability of reusing the adsorbent in many experiments. The valorization of argan waste into activated carbon using H3PO4 has allowed to obtain an effective adsorbent for the removal of anionic and cationic dyes and create an added value for environmental sustainability.

4.
Article in English | MEDLINE | ID: mdl-36905542

ABSTRACT

In order to develop materials able to guarantee optimal characteristics in terms of environmental compatibility, abundance, and photoactivity, zinc telluride (ZnTe) has become a great candidate for optoelectronic and photovoltaic device applications. In this work, on the basis of electrochemical techniques including cyclic voltammetry and chronoamperometry, it was found that the electrodeposition of zinc telluride (ZnTe) on indium tin oxide substrate (ITO) is a quasi-reversible reaction controlled by the diffusion process. The nucleation and growth mechanism follows the instantaneous three-dimensional process according to Scharifker and Hill model. The crystallographic structure and film morphology were studied by XRD and SEM analyses, respectively. ZnTe films have a cubic crystal structure, and they are characterized by good homogeneity. The optical measurements of the deposited films were performed, and a direct energy gap of 2.39 eV was determined by UV-visible spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...