Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 21(1): 254, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064699

ABSTRACT

BACKGROUND: South Africa has set a mandate to eliminate local malaria transmission by 2023. In pursuit of this objective a Sterile Insect Technique programme targeting the main vector Anopheles arabiensis is currently under development. Significant progress has been made towards operationalizing the technology. However, one of the main limitations being faced is the absence of an efficient genetic sexing system. This study is an assessment of an An. arabiensis (AY-2) strain carrying the full Y chromosome from Anopheles gambiae, including a transgenic red fluorescent marker, being introgressed into a South African genetic background as a potential tool for a reliable sexing system. METHODS: Adult, virgin males from the An. arabiensis AY-2 strain were outcrossed to virgin females from the South African, Kwazulu-Natal An. arabiensis (KWAG strain) over three generations. Anopheles arabiensis AY-2 fluorescent males were sorted as first instar larvae (L1) using the Complex Object Parametric Analyzer and Sorter (COPAS) and later screened as pupae to verify the sex. Life history traits of the novel hybrid KWAG-AY2 strain were compared to the original fluorescent AY-2 strain, the South African wild-type KWAG strain and a standard laboratory An. arabiensis (Dongola reference strain). RESULTS: The genetic stability of the sex-linked fluorescent marker and the integrity and high level of sexing efficiency of the system were confirmed. No recombination events in respect to the fluorescent marker were detected over three rounds of introgression crosses. KWAG-AY2 had higher hatch rates and survival of L1 to pupae and L1 to adult than the founding strains. AY-2 showed faster development time of immature stages and larger adult body size, but lower larval survival rates. Adult KWAG males had significantly higher survival rates. There was no significant difference between the strains in fecundity and proportion of males. KWAG-AY2 males performed better than reference strains in flight ability tests. CONCLUSION: The life history traits of KWAG-AY2, its rearing efficiency under laboratory conditions, the preservation of the sex-linked fluorescence and perfect sexing efficiency after three rounds of introgression crosses, indicate that it has potential for mass rearing. The potential risks and benefits associated to the use of this strain within the Sterile Insect Technique programme in South Africa are discussed.


Subject(s)
Anopheles , Infertility , Life History Traits , Animals , Anopheles/genetics , Female , Genomics , Larva/genetics , Male , Mosquito Control/methods , Mosquito Vectors/genetics , Pupa , South Africa
2.
J Econ Entomol ; 111(5): 2383-2390, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30020467

ABSTRACT

Insect mass-rearing is an essential requirement for the sterile insect technique. Production at a large scale requires the development of standardized rearing procedures to produce good quality males able to compete with wild males to mate with wild females. Three sets of experiments (using trays placed on the table, the whole tray-rack system, and climate-controlled chambers) have been conducted aiming to determine the optimal water temperature and number of eggs to aliquot into each larval rearing tray to achieve the highest production of pupae. No difference was found in time to pupation, sex ratio, or male body size as a result of altering larval density. However, higher larval densities resulted in decreased emergence rate and female body size. A constant water temperature of 22°C delayed hatching and did not allow Anopheles arabiensis to complete larval development. Hatching eggs in water at 22°C and then increasing water temperature to 27°C resulted in decreased pupae production compared to eggs hatched and larvae maintained at a water temperature of 27°C throughout. Water temperature and larval density affected the production parameters of An. arabiensis mosquitoes, which has implications for mass release programs. We conclude that 4,000 eggs per 4 liter and a water temperature of 27°C were the optimal conditions for mass-rearing this mosquito species which yielded 105,000 pupae/larval rearing unit. These results are valuable information in the development of standard operation procedures for the efficient large-scale rearing of An. arabiensis mosquitoes.


Subject(s)
Anopheles/growth & development , Animals , Female , Larva/growth & development , Male , Ovum/physiology , Pupa/physiology , Temperature
3.
Malar J ; 16(1): 41, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28118825

ABSTRACT

BACKGROUND: Anopheles arabiensis is one of the major malaria vectors that put millions of people in endemic countries at risk. Mass-rearing of this mosquito is crucial for strategies that use sterile insect technique to suppress vector populations. The sterile insect technique (SIT) package for this mosquito species is being developed by the Insect Pest Control Subprogramme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. To improve mass-rearing outcomes for An. arabiensis, the question of whether the egg production by females would be affected by the size of the adult holding cages, the source of the blood meal and the total number of pupae that could be loaded into the cages was addressed and finally the impact of adding additional pupae to the cage daily to maintain adult numbers on egg productivity assessed. METHODS: Mass production cages of two different volumes, two different sources of blood meal (bovine and porcine) and two different population densities (cages originally loaded with either 15,000 or 20,000 pupae) were tested and evaluated on the basis of eggs produced/cage or per female. Males and females pupae with a ratio of 1:1 were added to the cages at day 1 and 2 of pupation. The emerging adults had constant access to 5% sugar solution and blood fed via the Hemotek membrane feeding system. Eggs were collected either twice a week or daily. A generalized linear model was used to identify factors which gave significantly higher egg production. RESULTS: Neither cage volume nor blood meal source affected egg production per cage or per female. However, increasing population density to 20,000 pupae had a negative effect on eggs produced per cage and per female. Although high density negatively impacted egg production, adding 1000 daily additional pupae compensating for daily mortality resulted in a substantial increase in egg production. Moreover, in all tests the first and the third egg batches collected were significantly higher than others eggs batches. With the equipment and protocols described here and routinely used at the Insect Pest Control Laboratory (IPCL), it was possible to produce up to 120,000 eggs/cage/day. CONCLUSION: These results demonstrated that 15,000 is the optimal number of pupae to be loaded into the Anopheles Mass production cages. Under this condition, an average of 40 eggs per female was obtained for five gonotrophic cycles. However, an improvement in egg production can be achieved by daily addition, to the original 15,000 pupae, of one thousand pupae a day. Interestingly, feeding females with bovine or porcine blood using both large and small versions of the mass production cage did not affect egg productivity.


Subject(s)
Anopheles/growth & development , Anopheles/physiology , Entomology/methods , Mosquito Vectors/growth & development , Mosquito Vectors/physiology , Oviposition , Animal Feed , Animals , Cattle , Female , Male , Population Density , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...