Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 610: 121264, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34742827

ABSTRACT

Enteric infections have long constituted a silent epidemic responsible for hundreds of thousands of deaths around the world every year. Because of the global rise in antibiotic-resistant bacteria and the slow development of new small-molecule antibiotics, alternatives such as bacteriophage therapy have become a much sought-after option in the treatment of enteric infections. However, the administration of therapeutics through the oral route to target gastrointestinal infections poses challenges to dosage formulation because these active ingredients, particularly relatively fragile biological entities, require protection from the stomach's harsh acids. Encapsulation of the therapeutics within a pH-responsive coating capable of surviving low pH conditions has the potential to provide such protection. In this study, we developed a spray-dried powder vehicle capable of withstanding low pH comparable to stomach conditions, using Eudragit® S100 as a protective particle coating and trehalose as a stabilizing excipient for a possible active component. A particle formation model and a monodisperse droplet chain technique were initially used to study the formation process of Eudragit-trehalose composite microparticles at different ratios and in different ratios of water-ethanol solvent, which showed formation of particles with Eudragit shells varying in thickness from 0.13 µm to 0.75 µm. Promising Eudragit-trehalose formulations were subsequently spray-dried and their survival in acidic and alkaline environments studied using a new shadowgraphic imaging method. The results demonstrated that Eudragit was capable of creating a protective shell in the particles irrespective of the type of solvent used to prepare the formulations. The trehalose cores of particles with higher than 5% w/w of Eudragit remained protected after one hour of exposure at pH 2, indicating the potential of Eudragit-trehalose formulations for enteric delivery of drugs.


Subject(s)
Pharmaceutical Preparations , Trehalose , Feasibility Studies , Particle Size , Polymethacrylic Acids
2.
Eur J Pharm Biopharm ; 163: 23-37, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33753213

ABSTRACT

Spray drying is a technique that can be used to stabilize biopharmaceuticals, such as vaccines, within dry particles. Compared to liquid pharmaceutical products, dry powder has the potential to reduce costs associated with refrigerated storage and transportation. In this study, spray drying was investigated for processing an adjuvanted tuberculosis subunit vaccine, formulated as an oil-in-water nanoemulsion, into a dry powder composed of microparticles. Applying in-silico approaches to the development of formulation and processing conditions, successful encapsulation of the adjuvanted vaccine within amorphous microparticles was achieved in only one iteration, with high retention (>90%) of both the antigen and adjuvant system. Moisture-controlled stability studies on the powder were conducted over 26 months at temperatures up to 40 °C. Results showed that the powder was physically stable after 26 months of storage for all tested temperatures. Adjuvant system integrity was maintained at temperatures up to 25 °C after 26 months and after one month of storage at 40 °C. The spray-dried product demonstrated improved antigen thermostability when stored above refrigerated temperatures as compared to the liquid product. These results demonstrate the feasibility of spray drying as a method of encapsulating and stabilizing an adjuvanted vaccine.


Subject(s)
Adjuvants, Immunologic/chemistry , Drug Compounding/methods , Spray Drying , Tuberculosis Vaccines/chemistry , Tuberculosis/prevention & control , Adjuvants, Immunologic/administration & dosage , Chemistry, Pharmaceutical , Drug Stability , Drug Storage , Emulsions , Excipients , Humans , Nanoparticles/chemistry , Particle Size , Powders , Tuberculosis Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...