Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37840454

ABSTRACT

The emergence of definitive human haematopoietic stem cells (HSCs) from Carnegie Stage (CS) 14 to CS17 in the aorta-gonad-mesonephros (AGM) region is a tightly regulated process. Previously, we conducted spatial transcriptomic analysis of the human AGM region at the end of this period (CS16/CS17) and identified secreted factors involved in HSC development. Here, we extend our analysis to investigate the progression of dorso-ventral polarised signalling around the dorsal aorta over the entire period of HSC emergence. Our results reveal a dramatic increase in ventral signalling complexity from the CS13-CS14 transition, coinciding with the first appearance of definitive HSCs. We further observe stage-specific changes in signalling up to CS17, which may underpin the step-wise maturation of HSCs described in the mouse model. The data-rich resource is also presented in an online interface enabling in silico analysis of molecular interactions between spatially defined domains of the AGM region. This resource will be of particular interest for researchers studying mechanisms underlying human HSC development as well as those developing in vitro methods for the generation of clinically relevant HSCs from pluripotent stem cells.


Subject(s)
Hematopoietic Stem Cells , Signal Transduction , Mice , Animals , Humans , Signal Transduction/genetics , Cell Communication , Gene Expression Profiling , Aorta , Mesonephros , Gonads , Hematopoiesis/genetics
2.
Curr Opin Cell Biol ; 73: 133-140, 2021 12.
Article in English | MEDLINE | ID: mdl-34717142

ABSTRACT

The development of the vertebrate body axis relies on the activity of different populations of axial progenitors, including neuromesodermal progenitors. Currently, the term 'Neuromesodermal progenitors' is associated with various definitions. Here, we use distinct terminologies to highlight advances in our understanding of this cell type at both the single-cell and population levels. We discuss how these recent insights prompt new opportunities to address a range of biomedical questions spanning cancer metastasis, congenital disorders, cellular metabolism, regenerative medicine, and evolution. Finally, we outline some of the major unanswered questions and propose future directions at the forefront of neuromesodermal research.


Subject(s)
Body Patterning , Mesoderm , Consensus
3.
Cell Stem Cell ; 27(5): 822-839.e8, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32946788

ABSTRACT

Hematopoietic stem cells (HSCs) first emerge in the embryonic aorta-gonad-mesonephros (AGM) region. Studies of model organisms defined intersecting signaling pathways that converge to promote HSC emergence predominantly in the ventral domain of the dorsal aorta. Much less is known about mechanisms driving HSC development in humans. Here, to identify secreted signals underlying human HSC development, we combined spatial transcriptomics analysis of dorsoventral polarized signaling in the aorta with gene expression profiling of sorted cell populations and single cells. Our analysis revealed a subset of aortic endothelial cells with a downregulated arterial signature and a predicted lineage relationship with the emerging HSC/progenitor population. Analysis of the ventrally polarized molecular landscape identified endothelin 1 as an important secreted regulator of human HSC development. The obtained gene expression datasets will inform future studies on mechanisms of HSC development in vivo and on generation of clinically relevant HSCs in vitro.


Subject(s)
Endothelial Cells , Transcriptome , Gonads , Hematopoiesis , Hematopoietic Stem Cells , Humans , Mesonephros , Transcriptome/genetics
4.
Elife ; 92020 06 29.
Article in English | MEDLINE | ID: mdl-32597756

ABSTRACT

Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.


Subject(s)
Body Patterning , Epithelial-Mesenchymal Transition , Mesoderm/embryology , Mice/embryology , Receptor, Transforming Growth Factor-beta Type I/genetics , Snail Family Transcription Factors/genetics , Animals , Embryo, Mammalian/embryology , Mice/genetics , Mice, Transgenic , Receptor, Transforming Growth Factor-beta Type I/metabolism , Snail Family Transcription Factors/metabolism , Tail/embryology
5.
Stem Cell Reports ; 8(6): 1549-1562, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28479304

ABSTRACT

During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation.


Subject(s)
Aorta/metabolism , Hematopoietic Stem Cells/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian/metabolism , Genes, Reporter , Gonads/metabolism , Hematopoietic Stem Cells/cytology , Leukocyte Common Antigens/metabolism , Mesonephros/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Platelet Membrane Glycoprotein IIb/metabolism , Proto-Oncogene Proteins c-kit/metabolism
6.
Blood ; 128(12): 1567-77, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27421959

ABSTRACT

The first definitive hematopoietic stem cells (dHSCs) in the mouse emerge in the dorsal aorta of the embryonic day (E) 10.5 to 11 aorta-gonad-mesonephros (AGM) region. Notch signaling is essential for early HSC development but is dispensable for the maintenance of adult bone marrow HSCs. How Notch signaling regulates HSC formation in the embryo is poorly understood. We demonstrate here that Notch signaling is active in E10.5 HSC precursors and involves both Notch1 and Notch2 receptors, but is gradually downregulated while they progress toward dHSCs at E11.5. This downregulation is accompanied by gradual functional loss of Notch dependency. Thus, as early as at final steps in the AGM region, HSCs begin acquiring the Notch independency characteristic of adult bone marrow HSCs as part of the maturation program. Our data indicate that fine stage-dependent tuning of Notch signaling may be required for the generation of definitive HSCs from pluripotent cells.


Subject(s)
Aorta/embryology , Embryo, Mammalian/cytology , Gonads/embryology , Hematopoietic Stem Cells/cytology , Mesonephros/embryology , Receptor, Notch2/metabolism , Stromal Cells/cytology , Animals , Aorta/metabolism , Cells, Cultured , Embryo, Mammalian/metabolism , Gonads/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Mesonephros/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Stromal Cells/metabolism
7.
PLoS Genet ; 11(10): e1005595, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26496642

ABSTRACT

Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.


Subject(s)
Drosophila Proteins/genetics , JNK Mitogen-Activated Protein Kinases/genetics , Regeneration/genetics , Transcription Factors/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Animals , Apoptosis/genetics , Cell Proliferation/genetics , Drosophila Proteins/biosynthesis , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Imaginal Discs/growth & development , JNK Mitogen-Activated Protein Kinases/biosynthesis , Reactive Oxygen Species/metabolism , Signal Transduction , Stress, Physiological/genetics , Transcription Factors/biosynthesis , Wings, Animal/growth & development , p38 Mitogen-Activated Protein Kinases/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...