Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(18): 9004-9010, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38623868

ABSTRACT

The propagation of spin waves is one of the promising ways to design nanoscale spintronic devices. The spin waves can interact with the magnetic skyrmion, a particle-like object that is topologically stabilized by Dzyaloshinskii-Moriya interaction (DMI) in thin film heterostructures. In this work, a spin wave-driven skyrmion-based diode is proposed by employing a T-shaped ferromagnetic nanotrack. The one-way motion of the skyrmion is achieved by exploiting the mid-arm at the center of the nanotrack. This prevents the reverse motion of the skyrmion owing to the skyrmion Hall effect (SkHE) and the absence of a repulsive force from the far edge in the mid-arm region. In order to facilitate the diode functionality of the spin wave-driven skyrmion, the amplitude and frequency of the excitation field should be considered in the ranges 0.07 T ≤ H0 ≤ 0.4 T and 60 GHz ≤ f ≤ 80 GHz, respectively. The micromagnetic interaction energy between the edges and the spin wave-driven skyrmion creates a potential gradient that induces the force which is responsible for the longitudinal motion of the skyrmion. The suggested spin wave driven diode exhibits a processing speed on the order of 100 m s-1 at 60 GHz frequency and 0.4 T amplitude. Hence, this device paves the way for the development of complete non-charge based magnetic devices for various spintronic applications.

2.
Nanotechnology ; 35(7)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38014695

ABSTRACT

Under the presence of temperature gradient (TG) on a nanotrack, it is necessary to investigate the skyrmion dynamics in various magnetic systems under the combined effect of forces due to magnonic spin transfer torque(µSTT),thermal STT (τSTT), entropic difference(dS),as well as thermal induced dipolar field (DF). Hence, in this work, the dynamics of skyrmions in ferromagnets (FM), synthetic antiferromagnets (SAF), and antiferromagnets (AFM) have been studied under different TGs and damping constants (αG). It is observed thatαGplays a major role in deciding the direction of skyrmion motion either towards the hotter or colder side in different magnetic structures. Later, FM skyrmion based logic device is proposed that consists of a cross-coupled nanotrack, where the skyrmions on horizontal and vertical nanotrack are controlled by exploiting TG and electrical STT (eSTT), respectively by taking the advantages of thermal induced skyrmion Hall effect (SkHE). The proposed device performs AND and OR logic functionalities simultaneously, when the applied current density is2×1011Am-2.Moreover, the proposed device is also able to exhibit the half adder functionality by tuning the applied current density to3×1011Am-2.The total energy consumption for AND and OR logic operation and half adder are 33.63 fJ and 25.06 fJ, respectively. This paves the way for the development of energy-efficient logic devices with ultra-high storage density.

3.
Nanoscale Adv ; 5(2): 450-458, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756271

ABSTRACT

Antiferromagnetic (AFM) skyrmions are favored over ferromagnetic (FM) skyrmions as they can be driven parallel to in-plane driving currents and eventually prevent the annihilation at the edges of nanotrack. In this study, an AFM skyrmion-based diode is proposed to realize the one-way skyrmion motion that is crucial for data processing in nanoelectronic and spintronic devices. The skyrmion transport is controlled by exploiting the staircase notch region in the middle of the nanotrack. By virtue of this, the micromagnetic interaction energy between the skyrmion and the notch edges generates a potential gradient that further gives rise to repulsive forces on the skyrmion. The resultant of the forces from the driving current and edge repulsions make the skyrmion move along the notch region to overcome the device window and reach the detection region. The notch is designed in such a way that it prevents the movement of the skyrmion in the reverse direction, thereby achieving diode functionality. The proposed device offers processing speed in the order of 103 m s-1, hence paving the way for the development of energy-efficient and high-speed devices in antiferromagnetic spintronics.

4.
Nanotechnology ; 32(21)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33530074

ABSTRACT

Magnetic skyrmions are potential candidates for neuromorphic computing due to their inherent topologically stable particle-like behavior, low driving current density, and nanoscale size. Antiferromagnetic skyrmions are favored as they can be driven parallel to in-plane electrical currents as opposed to ferromagnetic skyrmions which exhibit the skyrmion Hall effect and eventually cause their annihilation at the edge of nanotracks. In this paper, an antiferromagnetic skyrmion based artificial neuron device consisting of a magnetic anisotropy barrier on a nanotrack is proposed. It exploits inter-skyrmion repulsion, mimicking the integrate-fire (IF) functionality of a biological neuron. The device threshold represented by the maximum number of skyrmions that can be pinned by the barrier can be tuned based on the particular current density employed on the nanotrack. The corresponding neuron spiking event occurs when a skyrmion overcomes the barrier. By raising the device threshold, lowering the barrier width and height, the operating current density of the device can be decreased to further enhance its energy efficiency. The proposed device paves the way for developing energy-efficient neuromorphic computing in antiferromagnetic spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...