Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732713

ABSTRACT

This study investigates polyethylene glycol (PEG) homopolymer thin film adsorption on gold surfaces of controlled surface chemistry. The conformational states of physisorbed PEG are analyzed through polarization modulation infrared reflection-absorption spectrometry (PM-IRRAS). The PM-IRRAS principle is based on specific optical selection rules allowing the detection of surface-specific FTIR response of thin polymer films on the basis of differential reflectivity at the polymer/substrate interface for p- and s-polarized light. The intensification of the electric field generated at the PEG/substrate interface for p-polarized IR light in comparison with s-polarized light permits the analysis of PEG chain anisotropy and conformational changes induced by the adsorption. Results showed that PEG adsorbs on model substrates having a rather hydrophilic character in a way that the PEG chains spread parallel to the surface. In the case of a very hydrophilic substrate, the adsorbed PEG chains are in a stable thermodynamic state which allows them to arrange and crystallize as stacked crystalline lamellae after adsorption. The surface topography and morphology of the PEG thin films were also investigated by atomic force microscopy (AFM). While in the bulk state, PEG crystallizes in the form of large spherulites; on substrates whose adsorption is favored by surface chemistry, PEG crystallizes in the form of stacked lamellae with a thickness equal to 20 nm. Conversely, on a hydrophobic substrate, the PEG chains do not crystallize and adsorption occurs in the statistical coil state.

2.
Polymers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080716

ABSTRACT

The crystallinity and the growth rate of crystalline structures of polyethylene glycol and polyethylene blocks in polyethylene-b-polyethylene glycol diblock copolymers (PE-b-PEG) were evaluated and compared to polyethylene and polyethylene glycol homopolymers. Melting and crystallization behaviours of PE-b-PEG copolymers with different molecular weights and compositions are investigated by differential scanning calorimetry (DSC). The polyethylene/polyethylene glycol block ratio of the copolymers varies from 17/83 to 77/23 (weight/weight). The influence of the composition of PE-b-PEG copolymer on the ability of each block to crystallize has been determined. Thermal transition data are correlated with optical polarized microscopy, used to investigate the morphology and growth rate of crystals. The results show that the crystallization of the polyethylene block is closer to the polyethylene homopolymer when the copolymer contains more than 50 wt. % of polyethylene in the copolymer. For PE-b-PEG copolymers containing more than 50 wt. % of polyethylene glycol, the polyethylene glycol block morphology is almost similar to the PEG homopolymer. An important hindrance of each block on the crystallization growth rate of the other block has been revealed.

SELECTION OF CITATIONS
SEARCH DETAIL
...