Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(6): 2511-2519, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35113568

ABSTRACT

Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T). This makes it possible to exploit the high spin polarization of optically polarized crystals, while mitigating the challenges of its transfer to external nuclei. With this method, we inject the highly polarized mixture into a benchtop NMR spectrometer and observe the polarization dynamics for target 1H nuclei. Although the spectra are radiation damped due to the high naphthalene magnetization, we describe a procedure to process the data to obtain more conventional NMR spectra and extract the target nuclei polarization. With the entire process occurring on a time scale of 1 min, we observe NMR signals enhanced by factors between -200 and -1730 at 1.45 T for a range of small molecules.

2.
ChemSusChem ; 14(1): 441-448, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-32860491

ABSTRACT

The demand for lithium-ion batteries has risen dramatically over the years. Unfortunately, many of the essential component materials, such as cobalt and lithium, are both costly and of limited abundance. For this reason, the recycling of lithium-ion battery electrodes is crucial to ensuring the availability of such resources and protecting the environment. Herein, a simple and scalable recycling process was developed for the prototypical cathode active material Li1.02 (Ni0.8 Co0.1 Mn0.1 )0.98 O2 (NCM-811). By a combination of thermal decomposition and dissolution steps, spent NCM could be converted into Li2 CO3 and a transition metal oxalate blend, which served as precursors for new NCM. Importantly, it was also possible to individually separate each transition metal during the recycling process, thereby extending the utility of this method to a wide variety of NCM compositions. Each intermediate in the process was investigated by scanning electron microscopy and X-ray diffraction. Additionally, the elemental composition of the recycled NCM-811 was confirmed using inductively coupled plasma optical emission spectroscopy and energy-dispersive X-ray spectroscopy. The electrochemical performance of the recycled NCM-811 exhibited up to 80 % of the initial capacity of pristine NCM-811. The method presented herein serves as an efficient and environmentally benign alternative to existing recycling methods for lithium-ion battery electrode materials.

3.
ACS Appl Mater Interfaces ; 10(51): 44452-44462, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30511570

ABSTRACT

Advanced lithium-ion batteries are of great interest for consumer electronics and electric vehicle applications; however, they still suffer from drawbacks stemming from cathode active material limitations (e.g., insufficient capacities and capacity fading). One approach for alleviating such limitations and stabilizing the active material structure may be anion doping. In this work, fluorine and nitrogen are investigated as potential dopants in Li1.02(Ni0.8Co0.1Mn0.1)0.98O2 (NCM) as a prototypical nickel-rich cathode active material. Nitrogen doping is achieved by ammonia treatment of NCM in the presence of oxygen, which serves as an unconventional and new approach. The crystal structure was investigated by means of Rietveld and pair distribution function analysis of X-ray diffraction data, which provide very precise information regarding both the average and local structure, respectively. Meanwhile, time-of-flight secondary-ion mass spectroscopy was used to assess the efficacy of dopant incorporation within the NCM structure. Moreover, scanning electron microscopy and scanning transmission electron microscopy were conducted to thoroughly investigate the dopant influences on the NCM morphology. Finally, the electrochemical performance was tested via galvanostatic cycling of half- and full-cells between 0.1 and 2 C. Ultimately, a dopant-dependent modulation of the NCM structure was found to enable the enhancement of the electrochemical performance, thereby opening a route to cathode active material optimization.

4.
Phys Chem Chem Phys ; 18(21): 14299-316, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27165175

ABSTRACT

The abundance of sodium has recently sparked considerable interest in sodium-ion batteries (NIBs). Their similarity to conventional lithium-ion technology is obvious; however, the cell chemistry often significantly deviates. Graphite, although being the standard negative electrode in Li-ion batteries, is largely inactive for Na-ion storage in conventional non-aqueous carbonate-based electrolytes, for example. Very recently, it has been demonstrated that graphite can be activated for Na-ion storage in cells with ether-based electrolytes. The storage mechanism is based on co-intercalation of solvent molecules along with the Na-ions, forming ternary graphite intercalation compounds (t-GICs). This process is highly reversible but yet poorly understood. Here, we provide a comprehensive study on the formation and the stability of t-GICs. A series of ether solvents are being discussed: linear glymes with different chain lengths (mono-, di-, tri-, and tetraglyme), several derivatives with side groups as well as tetrahydrofuran (THF) as a cyclic ether and one crown ether. We show that the redox potentials shift depending on the ether chain length and mixing of ethers might enable tailoring of the redox behaviour. The inferior behaviour of triglyme is likely due to the less ideal ion coordination. Complementary experiments with lithium are made and demonstrate the superior behaviour of sodium. We find that the increase in graphene layer spacing during intercalation only slightly depends on the chain length and is in the range of 250%, and still mechanical stability is preserved. We further show the t-GICs possess chemical stability and demonstrate that the kinetically favoured charge transfer is probably due to the absence of a solid electrolyte interphase.

5.
Nano Lett ; 15(12): 7822-8, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26544014

ABSTRACT

The transport properties of Ge-doped single GaN nanowires are investigated, which exhibit a weak localization effect as well as universal conductance fluctuations at low temperatures. By analyzing these quantum interference effects, the electron phase coherence length was determined. Its temperature dependence indicates that in the case of highly doped nanowires electron-electron scattering is the dominant dephasing mechanism, while for the slightly doped nanowires dephasing originates from Nyquist-scattering. The change of the dominant scattering mechanism is attributed to a modification of the carrier confinement caused by the Ge-doping. The results demonstrate that the phase coherence length can be tuned by the donor concentration making Ge-doped GaN nanowires an ideal model system for studying the influence of impurities on quantum-interference effects in mesoscopic and nanoscale systems.

6.
Phys Rev Lett ; 113(26): 263602, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615330

ABSTRACT

The silicon-vacancy (SiV-) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4±0.2 ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35±3 ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the 29Si isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...