Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ecol Evol ; 11(24): 18089-18110, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003660

ABSTRACT

Non-native tree species (NNT) are used in European forestry for many purposes including their growth performance, valuable timber, and resistance to drought and pest or pathogen damage. Yet, cultivating NNT may pose risks to biodiversity, ecosystem functioning, and the provisioning of ecosystem services, and several NNT have been classified as invasive in Europe. Typically, such classifications are based on risk assessments, which do not adequately consider site-specific variations in impacts of the NNT or the extent of affected areas. Here, we present a new methodological framework that facilitates both mitigating risks associated with NNT and taking advantage of their ecosystem services. The framework is based on a stratified assessment of risks posed by NNT which distinguishes between different sites and considers effectiveness of available management strategies to control negative effects. The method can be applied to NNT that already occur in a given area or those NNT that may establish in future. The framework consists of eight steps and is partly based on existing knowledge. If adequate site-specific knowledge on NNT does not yet exist, new evidence on the risks should be obtained, for example, by collecting and analyzing monitoring data or modeling the potential distribution of NNT. However, limitations remain in the application of this method, and we propose several policy and management recommendations which are required to improve the responsible use of NNT.

2.
PLoS One ; 12(4): e0175671, 2017.
Article in English | MEDLINE | ID: mdl-28414764

ABSTRACT

Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar levels. However, given that either non-significant or inconclusive relationships were detected within hemispheres, alternative explanations of the differences in foliar hairs are more likely, including the effects of environment, genotypes or herbivory.


Subject(s)
Plant Leaves/radiation effects , Asteraceae/anatomy & histology , Asteraceae/radiation effects , Climate , Echium/anatomy & histology , Echium/radiation effects , Ecosystem , Introduced Species , Plant Leaves/anatomy & histology , Remote Sensing Technology , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...