Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Audiology ; 40(6): 327-35, 2001.
Article in English | MEDLINE | ID: mdl-11781046

ABSTRACT

The aim of this study is to outline the mechanisms leading cochlear cells to die. We utilized an immortalized cell line (OC-k3 cells) derived from the organ of Corti of transgenic mice in order to perform in-depth biochemical studies with no limitations on sample size and number. We probed these cells with cisplatin and gentamicin, two drugs which display in vivo undesired ototoxic side-effects. We investigated cell viability, reactive oxygen species (ROS) production and glutathione (GSH) levels and tested the effects of different concentrations of cisplatin and gentamicin from 0 to 48 h. Results show that cells undergo a dose- and treatment-time-dependent apoptosis characterized by nuclear fragmentation, integrity of the cell membrane and mitochondria, and absence of DNA endonuclease activity. During the early part of treatment, ROS production increases and intracellular GSH decreases, probably due to the activation of protein kinase C alpha. Use of antioxidants such as N-acetylcysteine, GSH and vitamin C rescues cells from apoptosis almost completely. Overall, these data indicate that ROS generation might play a central role in inducing inner ear cell apoptosis and may have an additive role in the ageing process.


Subject(s)
Apoptosis/physiology , Organ of Corti/pathology , Animals , Cell Death , Cell Line , Mice , Mice, Transgenic
2.
Blood ; 95(11): 3423-8, 2000 Jun 01.
Article in English | MEDLINE | ID: mdl-10828024

ABSTRACT

Previous studies have established that factor VII gene (F7) polymorphisms (5'F7 and R353Q) contribute about one-third of factor VII (FVII) level variation in plasma. However, F7 genotyping in patients with cardiovascular disease has produced conflicting results. Population and expression studies were used to investigate the role of intron 7 (IVS7 ) polymorphisms, including repeat and sequence variations, in controlling activated FVII (FVIIa) and antigen (FVIIag) levels. Genotype-phenotype studies performed in 438 Italian subjects suggested a positive relation between the IVS7 repeat number and FVII levels. The lowest values were associated with the IVS7 + 7G allele. The screening of 52 patients with mild FVII deficiency showed an 8-fold increase in frequency (8%) of this allele, and among heterozygotes for identical mutations, lower FVII levels were observed in the IVS7 + 7G carriers. This frequent genetic component participates in the phenotypic heterogeneity of FVII deficiency. The evaluation of the individual contribution of polymorphisms was assisted by the expression of each IVS7 variant, as a minigene, in eukaryotic cells. The novel quantitative analysis revealed that higher numbers of repeats were associated with higher mRNA expression levels and that the IVS7 + 7G allele, previously defined as a functionally silent polymorphism, was responsible for the lowest relative mRNA expression. Taken together, these findings indicate that the IVS7 polymorphisms contribute to the plasmatic variance of FVII levels via differential efficiency of mRNA splicing. These studies provide further elements to understand the control of FVII levels, which could be of importance to ensure the hemostatic balance under pathologic conditions.


Subject(s)
Antigens/metabolism , Factor VII Deficiency/genetics , Factor VII/genetics , Factor VII/metabolism , Factor VIIa/metabolism , Genetic Variation , Introns , Polymorphism, Genetic , Amino Acid Substitution , Animals , Cell Line , Cricetinae , Factor VII Deficiency/blood , Genotype , Heterozygote , Humans , Kidney , Phenotype , Point Mutation , Recombinant Proteins/metabolism , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...