Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE J Transl Eng Health Med ; 5: 4300211, 2017.
Article in English | MEDLINE | ID: mdl-29018640

ABSTRACT

Mitotic count is an important diagnostic factor in breast cancer grading and prognosis. Detection of mitosis in breast histopathology images is very challenging mainly due to diffused intensities along object boundary and shape variation in different stages of mitosis. This paper demonstrates an accurate technique for detecting the mitotic cells in Hematoxyline and Eosin stained images by step by step refinement of segmentation and classification stages. Krill Herd Algorithm-based localized active contour model precisely segments cell nuclei from background stroma. A deep belief network based multi-classifier system classifies the labeled cells into mitotic and nonmitotic groups. The proposed method has been evaluated on MITOS data set provided for MITOS-ATYPIA contest 2014 and also on clinical images obtained from Regional Cancer Centre (RCC), Thiruvananthapuram, which is a pioneer institute specifically for cancer diagnosis and research in India. The algorithm provides improved performance compared with other state-of-the-art techniques with average F-score of 84.29% for the MITOS data set and 75% for the clinical data set from RCC.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2435-2439, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268817

ABSTRACT

The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.


Subject(s)
Algorithms , Breast/pathology , Cell Nucleus/pathology , Image Processing, Computer-Assisted/methods , Mitosis , Breast Neoplasms/pathology , Female , Humans , Prognosis , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL