Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 41(3): 699-739, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34223931

ABSTRACT

Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.


Subject(s)
Droughts , Thermotolerance , Chlorophyll/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Proteomics , Reactive Oxygen Species , Stress, Physiological , Thermotolerance/genetics
2.
Front Plant Sci ; 11: 587264, 2020.
Article in English | MEDLINE | ID: mdl-33193540

ABSTRACT

Rising global temperatures due to climate change are affecting crop performance in several regions of the world. High temperatures affect plants at various organizational levels, primarily accelerating phenology to limit biomass production and shortening reproductive phase to curtail flower and fruit numbers, thus resulting in severe yield losses. Besides, heat stress also disrupts normal growth, development, cellular metabolism, and gene expression, which alters shoot and root structures, branching patterns, leaf surface and orientation, and anatomical, structural, and functional aspects of leaves and flowers. The reproductive growth stage is crucial in plants' life cycle, and susceptible to high temperatures, as reproductive processes are negatively impacted thus reducing crop yield. Genetic variation exists among genotypes of various crops to resist impacts of heat stress. Several screening studies have successfully phenotyped large populations of various crops to distinguish heat-tolerant and heat-sensitive genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods, spikes, spikelets), and seeds (or grains), which have led to direct release of heat-tolerant cultivars in some cases (such as chickpea). In the present review, we discuss examples of contrasting genotypes for heat tolerance in different crops, involving many traits related to thermotolerance in leaves (membrane thermostability, photosynthetic efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules (antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins), and "omics" (phenomics, transcriptomics, genomics) approaches. The traits linked to heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of crops to enhance their thermotolerance. Involving these traits will be useful for screening contrasting genotypes and would pave the way for characterizing the underlying molecular mechanisms, which could be valuable for engineering plants with enhanced thermotolerance. Wherever possible, we discussed breeding and biotechnological approaches for using these traits to develop heat-tolerant genotypes of various food crops.

3.
Front Microbiol ; 11: 600576, 2020.
Article in English | MEDLINE | ID: mdl-33584566

ABSTRACT

Soil microbes play a vital role in improving plant growth, soil health, ameliorate biotic/abiotic stress and enhance crop productivity. The present study was aimed to investigate a coordinated effect of compatible consortium [salt tolerating Rhizobium and rhizobacterium with 1-aminocyclopropane-1-carboxylate (ACC) deaminase] in enhancing plant growth promoting (PGP) traits, symbiotic efficiency, nutrient acquisition, anti-oxidative enzymes, grain yield and associated profitability in spring mungbean. We identified a non-pathogenic compatible Rhizobium sp. LSMR-32 (MH644039.1) and Enterococcus mundtii LSMRS-3 (MH644178.1) from salt affected areas of Punjab, India and the same were assessed to develop consortium biofertilizer based on salt tolerance, multifarious PGP traits, antagonistic defense activities and presence of nifH, acds, pqq, and ipdc genes. Indole Acetic acid (IAA), P-solubilization, biofilm formation, exo-polysaccharides, siderophore, salt tolerance, ACC deaminase activities were all found highly significant in dual inoculant (LSMR-32 + LSMRS-3) treatment compared to LSMR-32 alone. Under saline soil conditions, dual inoculant showed a higher seed germination, plant height, biomass, chlorophyll content and macro and micro-nutrient uptake, than un-inoculated control. However, symbiotic (nodulation, nodule biomass and leghaemoglobin content) and soil quality parameters (phosphatase and soil dehydrogenase enzymes) increased numerically with LSMR-32 + LSMRS-3 over Rhizobium sp. LSMR-32 alone. Dual bacterial inoculation (LSMR-32 + LSMRS-3) increased the proline content (2.05 fold), anti-oxidative enzymes viz., superoxide dismutase (1.50 fold), catalase (1.43 fold) and peroxidase (3.88 folds) in contrast to control treatment. Decreased Na+ accumulation and increased K+ uptake resulted in favorable K+/Na+ ratio through ion homeostasis. Co-inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 significantly improved the grain yield by 8.92% and led to superior B: C ratio over Rhizobium sp. alone under salt stress. To best of our knowledge this is perhaps the first field report from Indian soils that largely describes dual inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 and the same can be considered as a game-changer approach to simultaneously induce salt tolerance and improve productivity in spring mungbean under saline stress conditions.

4.
Sci Rep ; 9(1): 7788, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127130

ABSTRACT

Rising global temperatures are proving to be detrimental for the agriculture. Hence, strategies are needed to induce thermotolerance in food crops to sustain the food production. GABA (γ-aminobutyric acid), a non-protein amino acid, can partially protect plants from high-temperature stress. This study hypothesises that declining GABA concentrations in the cells of heat-stressed mungbean plants increases the heat-sensitivity of reproductive function. Mungbean plants were grown in a natural, outdoor environment (29.3/16.1 ± 1 °C as mean day/night temperature, 1350-1550 µmol m-2 s-1 light intensity, 60-65% as mean relative humidity) until the start of the reproductive stage. Subsequently, two temperature treatments were imposed in a controlled environment-control (35/23 °C) and heat stress (45/28 °C)-at about 800 µmol m-2 s-1 light intensity and 65-70% as mean relative humidity, until pod maturity. In heat-stressed (HS) plants, endogenous GABA concentrations in leaf and anther samples had declined by 49 and 60%, respectively, and to a much lesser degree in the plants, exogenously supplemented with 1 mM GABA. The reproductive function of GABA-treated heat-stressed plants improved significantly in terms of pollen germination, pollen viability, stigma receptivity and ovule viability, compared to untreated HS controls. In addition, GABA-treated heat-stressed plants had less damage to membranes, photosynthetic machinery (chlorophyll concentration, chlorophyll fluorescence, RuBisCO activity were functionally normal) and carbon assimilation (sucrose synthesis and its utilisation) than the untreated HS controls. Leaf water status improved significantly with GABA application, including enhanced accumulation of osmolytes such as proline and trehalose due to increase in the activities of their biosynthetic enzymes. GABA-treated heat-stressed plants produced more pods (28%) and seed weight (27%) plant-1 than the untreated controls. This study is the first to report the involvement of GABA in protecting reproductive function in mungbean under heat stress, as a result of improved leaf turgor, carbon fixation and assimilation processes, through the augmentation of several enzymes related to these physiological processes.


Subject(s)
Heat-Shock Response , Vigna/physiology , gamma-Aminobutyric Acid/metabolism , Germination , Photosynthesis , Pollination , Thermotolerance , Vigna/growth & development
5.
J Exp Bot ; 56(422): 3033-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16263911

ABSTRACT

Experimental evidence is presented to show that the 18O enrichment in the leaf biomass and the mean (time-averaged) transpiration rate are positively correlated in groundnut and rice genotypes. The relationship between oxygen isotope enrichment and stomatal conductance (g(s)) was determined by altering g(s) through ABA and subsequently using contrasting genotypes of cowpea and groundnut. The Peclet model for the 18O enrichment of leaf water relative to the source water is able to predict the mean observed values well, while it cannot reproduce the full range of measured isotopic values. Further, it fails to explain the observed positive correlation between transpiration rate and 18O enrichment in leaf biomass. Transpiration rate is influenced by the prevailing environmental conditions besides the intrinsic genetic variability. As all the genotypes of both species experienced similar environmental conditions, the differences in transpiration rate could mostly be dependent on intrinsic g(s). Therefore, it appears that the delta18O of leaf biomass can be used as an effective surrogate for mean transpiration rate. Further, at a given vapour pressure difference, delta18O can serve as a measure of stomatal conductance as well.


Subject(s)
Oxygen Isotopes , Plant Transpiration , Arachis/genetics , Arachis/physiology , Biomass , Botany/methods , Fabaceae/genetics , Fabaceae/physiology , Genetic Variation , Oryza/genetics , Oryza/physiology , Plant Transpiration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...