Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 181: 437-449, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31176116

ABSTRACT

Mesoporous vaterite CaCO3 crystals are nowadays one of the most popular vectors for loading of fragile biomolecules like proteins due to biocompatibility, high loading capacity, cost effective and simple loading procedures. However, recent studies reported the reduction of bioactivity for protein encapsulation into the crystals in water due to rather high alkaline pH of about 10.3 caused by the crystal hydrolysis. In this study we have investigated how to retain the bioactivity and control the release rate of the enzyme superoxide dismutase (SOD) loaded into the crystals via co-synthesis. SOD is widely used as an antioxidant in ophthalmology and its formulations with high protein content and activity as well as opportunities for a sustained release are highly desirable. Here we demonstrate that SOD co-synthesis can be done at pH 8.5 in a buffer without affecting crystal morphology. The synthesis in the buffer allows reaching the high loading efficiency of 93%, high SOD content (24 versus 15 w/w % for the synthesis in water), and order of magnitude higher activity compared to the synthesis in water. The enormous SOD concentration into crystals of 10-2 M is caused by the entrapment of SOD aggregates into the crystal pores. The SOD released from crystals at physiologically relevant ionic strength fully retains its bioactivity. As found by fitting the release profiles using zero-order and Baker-Lonsdale models, the SOD release mechanism is governed by both the SOD aggregate dissolution and by the diffusion of SOD molecules thorough the crystal pores. The latest process contributes more in case of the co-synthesis in the buffer because at higher pH (co-synthesis in water) the unfolded SOD molecules aggregate stronger. The release is bi-modal with a burst (ca 30%) followed by a sustained release and a complete release due to the recrystallization of vaterite crystals to non-porous calcite crystals. The mechanism of SOD loading into and release from the crystals as well as perspectives for the use of the crystals for SOD delivery in ophthalmology are discussed. We believe that together with a fundamental understanding of the vaterite-based protein encapsulation and protein release, this study will help to establish a power platform for a mild and effective encapsulation of fragile biomolecules like proteins at bio-friendly conditions.


Subject(s)
Calcium Carbonate/metabolism , Ophthalmology , Superoxide Dismutase/metabolism , Calcium Carbonate/chemistry , Capsules/chemistry , Capsules/metabolism , Crystallization , Hydrogen-Ion Concentration , Particle Size , Porosity , Superoxide Dismutase/chemistry , Surface Properties , Thermodynamics
2.
Curr Drug Deliv ; 13(8): 1303-1312, 2016.
Article in English | MEDLINE | ID: mdl-27440073

ABSTRACT

During the past decade asialoglycoprotein receptor (ASGP-R) expressed predominantly by hepatocytes has attracted a considerable attention as a convenient biomolecular trap for targeted drug delivery. Currently, several selective galactose-containing ligands equipped by drug molecules, e.g. known anticancer therapeutics, as well as diagnostic tools are under active preclinical development. In this paper, we have carried out a rational in silico screening among the molecules available in ChemDiv collection and compounds provided by our colleagues to reveal potential ASGP-R binders. Thus, 3D molecular docking approach provided a set of 100 `high score` molecules that was subsequently evaluated in vitro using an advanced Surface Plasmon Resonance (SPR) technique. As a result, dozens of novel small-molecule ASGP-R ligands with high diversity in structure were identified. Several hits showed the binding affinity much more better than that determined for galactose and Nacetylgalactosamine which were used as reference compounds. The disclosed molecules can be reasonably regarded as promising molecular devices for targeted drug delivery to hepatocytes.


Subject(s)
Asialoglycoprotein Receptor/metabolism , Asialoglycoprotein Receptor/chemistry , Computer Simulation , Drug Delivery Systems , Hepatocytes/metabolism , Ligands , Molecular Docking Simulation , Surface Plasmon Resonance
3.
Oxid Med Cell Longev ; 2015: 5194239, 2015.
Article in English | MEDLINE | ID: mdl-26697135

ABSTRACT

Use of antioxidants to mitigate oxidative stress during ocular inflammatory diseases has shown therapeutic potential. This work examines a nanoscale therapeutic modality for the eye on the base of antioxidant enzyme, superoxide dismutase 1 (SOD1), termed "nanozyme." The nanozyme is produced by electrostatic coupling of the SOD1 with a cationic block copolymer, poly(L-lysine)-poly(ethyleneglycol), followed by covalent cross-linking of the complexes with 3,3'-dithiobis(sulfosuccinimidylpropionate) sodium salt. The ability of SOD1 nanozyme as well as the native SOD1 to reduce inflammatory processes in the eye was examined in vivo in rabbits with immunogenic uveitis. Results suggested that topical instillations of both enzyme forms demonstrated anti-inflammatory activity; however, the nanozyme was much more effective compared to the free enzyme in decreasing uveitis manifestations. In particular, we noted statistically significant differences in such inflammatory signs in the eye as the intensities of corneal and iris edema, hyperemia of conjunctiva, lens opacity, fibrin clots, and the protein content in aqueous humor. Clinical findings were confirmed by histological data. Thus, SOD1-containing nanozyme is potentially useful therapeutic agent for the treatment of ocular inflammatory disorders.


Subject(s)
Superoxide Dismutase/therapeutic use , Uveitis/drug therapy , Animals , Conjunctiva/metabolism , Conjunctiva/pathology , Polymers/chemistry , Rabbits , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use , Succinimides/chemistry , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Uveitis/metabolism , Uveitis/pathology
4.
J Proteome Res ; 6(4): 1580-94, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17326675

ABSTRACT

Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of two homologous domains (N- and C-), each bearing a Zn-dependent active site. ACE inhibitors are among the most prescribed drugs in the treatment of hypertension and cardiac failure. Fine epitope mapping of two monoclonal antibodies (mAb), 1G12 and 6A12, against the N-domain of human ACE, was developed using the N-domain 3D-structure and 21 single and double N-domain mutants. The binding of both mAbs to their epitopes on the N-domain of ACE is significantly diminished by the presence of the C-domain in the two-domain somatic tissue ACE and further diminished by the presence of sialic acid residues on the surface of blood ACE. The binding of these mAbs to blood ACE, however, increased dramatically (5-10-fold) in the presence of ACE inhibitors or EDTA, whereas the effect of these compounds on the binding of the mAbs to somatic tissue ACE was less pronounced and even less for truncated N-domain. This implies that the binding of ACE inhibitors or removal of Zn2+ from ACE active centers causes conformational adjustments in the mutual arrangement of N- and C-domains in the two-domain ACE molecule. As a result, the regions of the epitopes for mAb 1G12 and 6A12 on the N-domain, shielded in somatic ACE by the C-domain globule and additionally shielded in blood ACE by sialic acid residues in the oligosaccharide chains localized on Asn289 and Asn416, become unmasked. Therefore, we demonstrated a possibility to employ these mAbs (1G12 or 6A12) for detection and quantification of the presence of ACE inhibitors in human blood. This method should find wide application in monitoring clinical trials with ACE inhibitors as well as in the development of the approach for personalized medicine by these effective drugs.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/blood , Antibodies, Monoclonal/immunology , Peptidyl-Dipeptidase A/immunology , Angiotensin-Converting Enzyme Inhibitors/immunology , Binding Sites , Edetic Acid/immunology , Epitope Mapping , Humans , Mutation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Polysaccharides/immunology , Protein Structure, Tertiary , Zinc/metabolism
5.
Biochemistry ; 45(15): 4831-47, 2006 Apr 18.
Article in English | MEDLINE | ID: mdl-16605251

ABSTRACT

Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of two homologous domains (N and C), each bearing a Zn-dependent active site. We modeled the 3D-structure of the ACE N-domain using known structures of the C-domain of human ACE and the ACE homologue, ACE2, as templates. Two monoclonal antibodies (mAb), 3A5 and i2H5, developed against the human N-domain of ACE, demonstrated anticatalytic activity. N-domain modeling and mutagenesis of 21 amino acid residues allowed us to define the epitopes for these mAbs. Their epitopes partially overlap: amino acid residues K407, E403, Y521, E522, G523, P524, D529 are present in both epitopes. Mutation of 4 amino acid residues within the 3A5 epitope, N203E, R550A, D558L, and K557Q, increased the apparent binding of mAb 3A5 with the mutated N-domain 3-fold in plate precipitation assay, but abolished the inhibitory potency of this mAb. Moreover, mutation D558L dramatically decreased 3A5-induced ACE shedding from the surface of CHO cells expressing human somatic ACE. The inhibition of N-domain activity by mAbs 3A5 and i2H5 obeys similar kinetics. Both mAbs can bind to the free enzyme and enzyme-substrate complex, forming E.mAb and E.S.mAb complexes, respectively; however, only complex E.S can form a product. Kinetic analysis indicates that both mAbs bind better with the ACE N-domain in the presence of a substrate, which, in turn, implies that binding of a substrate causes conformational adjustments in the N-domain structure. Independent experiments with ELISA demonstrated better binding of mAbs 3A5 and i2H5 in the presence of the inhibitor lisinopril as well. This effect can be attributed to better binding of both mAbs with the "closed" conformation of ACE, therefore, disturbing the hinge-bending movement of the enzyme, which is necessary for catalysis.


Subject(s)
Antibodies, Monoclonal/pharmacology , Epitope Mapping/methods , Peptidyl-Dipeptidase A/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/metabolism , CHO Cells , Catalytic Domain , Cricetinae , Humans , Kinetics , Lisinopril/metabolism , Lisinopril/pharmacology , Molecular Sequence Data , Mutagenesis , Mutation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/immunology , Protein Binding/immunology , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...