Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 808
Filter
1.
Huan Jing Ke Xue ; 45(7): 3911-3918, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022939

ABSTRACT

Microplastics (MPs) are ubiquitous in the marine environment and have become an emerging pollutant that is attracting great attention. To reveal the pollution characteristics of MPs in surface seawater of coastal waters in Guangdong Province, nine bays (estuaries) were selected from Jiangmen to Shantou. The distribution and compositional characteristics of MPs were investigated through field sampling, oxidation digestion, and visual and compositional identification, and their potential sources were analyzed. The ecological risks were assessed by combining the pollution load index and the polymer risk index. The results showed that MPs were detected in all 30 surface seawater samples from the coastal waters of Guangdong Province, with an abundance range of 70-920 n·m-3 and an average abundance of (295.3 ±175.3) n·m-3. The highest MPs abundance was found in the Pearl River estuary, and the lowest abundance was found in Shenquan bay. The distribution patterns were mainly influenced by human activities and ocean currents. The dominant polymer types included polypropylene (31.2%), phenol resin (16.0%), polyethylene terephthalate (15.3%), and polyethylene (10.9%). The main shape, color, and size categories of MPs were fiber (57.5%), transparent (72.0%), and 0.5-1 mm (32.8%), respectively. The possible sources of MPs mainly included aquaculture, fishing, navigation, tourism, municipal sewage discharge, and ocean current transportation. The model assessment results showed that the pollution load risk of MPs was relatively low, but the polymer risk was at a medium-high level. This study provides a data basis for the action plan of plastic pollution control in Guangdong Province and supports the prevention and control of marine MPs pollution.

2.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992615

ABSTRACT

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Subject(s)
Disease Models, Animal , Inflammasomes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Syk Kinase , Vasodilation , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Syk Kinase/metabolism , Matrix Metalloproteinase 2/metabolism , Phenanthrenes/pharmacology , Male , Matrix Metalloproteinase 9/metabolism , Vasodilation/drug effects , Hyperlipidemias/drug therapy , Hyperlipidemias/physiopathology , Vasodilator Agents/pharmacology , Phosphorylation , Mice , Aorta/drug effects , Aorta/physiopathology , Aorta/metabolism , Aorta/enzymology , Apolipoproteins E
3.
Exp Biol Med (Maywood) ; 249: 10142, 2024.
Article in English | MEDLINE | ID: mdl-38993197

ABSTRACT

The cornea is an avascular tissue in the eye that has multiple functions in the eye to maintain clear vision which can significantly impair one's vision when subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptor proteins comprising three different peroxisome proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (α), PPAR gamma (γ), and PPAR delta (δ), have emerged as potential therapeutic targets for treating corneal diseases. In this review, we summarised the current literature on the therapeutic effects of PPAR agents on corneal diseases. We discussed the role of PPARs in the modulation of corneal wound healing, suppression of corneal inflammation, neovascularisation, fibrosis, stimulation of corneal nerve regeneration, and amelioration of dry eye by inhibiting oxidative stress within the cornea. We also discussed the underlying mechanisms of these therapeutic effects. Future clinical trials are warranted to further attest to the clinical therapeutic efficacy.


Subject(s)
Corneal Diseases , Peroxisome Proliferator-Activated Receptors , Humans , Corneal Diseases/drug therapy , Corneal Diseases/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Animals , Wound Healing/drug effects , Cornea/metabolism , Oxidative Stress/drug effects
4.
Environ Sci Technol ; 58(28): 12520-12531, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953238

ABSTRACT

Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.


Subject(s)
Fermentation , Sewage , Biotechnology/methods , Fatty Acids/metabolism
5.
J Pharm Biomed Anal ; 248: 116288, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38981330

ABSTRACT

Germacrone and curdione are germacrane-type sesquiterpenoids that are widely distributed and have extensive pharmacological activities; they are the main constituents of 'Xing-Nao-Jing Injection' (XNJ). Studies on the metabolic features of germacrane-type sesquiterpenoids are limited. In this study, the metabolites of germacrone and curdione were characterized by UHPLC-Q-Exactive Oribitrap mass spectrometry after they were orally administered to rats. In total, 60 and 76 metabolites were found and preliminarily identified in rats administered germacrone and curdione, respectively, among which at least 123 potential new compounds were included. New metabolic reactions of germacrane-type sesquiterpenoids were identified, which included oxidation (+4 O and +5 O), ethylation, methyl-sulfinylation, vitamin C conjugation, and cysteine conjugation reactions. Among the 136 metabolites (including 113 oxidation metabolites, two glucuronidation, two methylation, nine methyl-sulfinylation, three ethylation, six cysteine conjugation, and one Vitamin C conjugation metabolites), 32 metabolites were detected in nine organs, and the stomach, intestine, liver, kidneys, and small intestine were the main organs for the distribution of these metabolites. All 136 metabolites were detected in urine and 64 of them were found in feces. The results of this study not only contribute to research on in vivo processes related to germacrane-type sesquiterpenoids but also provide a strong foundation for a better understanding of in vivo processes and the effective forms of germacrone, curdione, and XNJ.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Sesquiterpenes, Germacrane , Animals , Sesquiterpenes, Germacrane/metabolism , Rats , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/administration & dosage , Male , Chromatography, High Pressure Liquid/methods , Tissue Distribution , Administration, Oral , Feces/chemistry
6.
Health Serv Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961668

ABSTRACT

OBJECTIVE: To determine the feasibility of integrating Medicare Advantage (MA) admissions into the Centers for Medicare & Medicaid Services (CMS) hospital outcome measures through combining Medicare Advantage Organization (MAO) encounter- and hospital-submitted inpatient claims. DATA SOURCES AND STUDY SETTING: Beneficiary enrollment data and inpatient claims from the Integrated Data Repository for 2018 Medicare discharges. STUDY DESIGN: We examined timeliness of MA claims, compared diagnosis and procedure codes for admissions with claims submitted both by the hospital and the MAO (overlapping claims), and compared demographic characteristics and principal diagnosis codes for admissions with overlapping claims versus admissions with a single claim. DATA COLLECTION/EXTRACTION METHODS: We combined hospital- and MAO-submitted claims to capture MA admissions from all hospitals and identified overlapping claims. For admissions with only an MAO-submitted claim, we used provider history data to match the National Provider Identifier on the claim to the CMS Certification Number used for reporting purposes in CMS outcome measures. PRINCIPAL FINDINGS: After removing void and duplicate claims, identifying overlapped claims between the hospital- and MAO-submitted datasets, restricting claims to acute care and critical access hospitals, and bundling same admission claims, we identified 5,078,611 MA admissions. Of these, 76.1% were submitted by both the hospital and MAO, 14.2% were submitted only by MAOs, and 9.7% were submitted only by hospitals. Nearly all (96.6%) hospital-submitted claims were submitted within 3 months after a one-year performance period, versus 85.2% of MAO-submitted claims. Among the 3,864,524 admissions with overlapping claims, 98.9% shared the same principal diagnosis code between the two datasets, and 97.5% shared the same first procedure code. CONCLUSIONS: Inpatient MA data are feasible for use in CMS claims-based hospital outcome measures. We recommend prioritizing hospital-submitted over MAO-submitted claims for analyses. Monitoring, data audits, and ongoing policies to improve the quality of MA data are important approaches to address potential missing data and errors.

7.
Tree Physiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976033

ABSTRACT

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation is frequently happened. However, the differential responses of mangrove plant at transcriptome combined metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina, a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using ICP-MS, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids, and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, finally glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.

8.
Bioresour Technol ; 406: 131070, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971392

ABSTRACT

In this study, two bioprocess models were first constructed with the newly-discovered comammox process described as one-step and two-step nitrification and evaluated against relevant experimental data. The validated models were then applied to reveal the potential effect of comammox bacteria on the granular bioreactor particularly suitable for undertaking partial nitritation/anammox (PN/A) under different operating conditions of bulk dissolved oxygen (DO) and influent NH4+. The results showed although comammox bacteria-based PN/A could achieve > 80.0 % total nitrogen (TN) removal over a relatively wider range of bulk DO and influent NH4+ (i.e., 0.25-0.40 g-O2/m3 and 470-870 g-N/m3, respectively) without significant nitrous oxide (N2O) production (< 0.1 %), the bulk DO should be finely controlled based on the influent NH4+ to avoid the undesired full nitrification by comammox bacteria. Comparatively, conventional ammonium-oxidizing bacteria (AOB)-based PN/A not only required higher bulk DO to achieve > 80.0 % TN removal but also suffered from 1.7 %∼2.8 % N2O production.


Subject(s)
Bacteria , Bioreactors , Nitrification , Nitrogen , Bioreactors/microbiology , Nitrogen/metabolism , Bacteria/metabolism , Oxygen/metabolism , Nitrous Oxide/metabolism , Ammonium Compounds/metabolism , Oxidation-Reduction
9.
Ann Acad Med Singap ; 53(3): 170-186, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38920244

ABSTRACT

Introduction: Tuberculosis (TB) remains endemic in Singapore. Singapore's clinical practice guidelines for the management of tuberculosis were first published in 2016. Since then, there have been major new advances in the clinical management of TB, ranging from diagnostics to new drugs and treatment regimens. The National TB Programme convened a multidisciplinary panel to update guidelines for the clinical management of drug-susceptible TB infection and disease in Singapore, contextualising current evidence for local practice. Method: Following the ADAPTE framework, the panel systematically reviewed, scored and synthesised English-language national and international TB clinical guidelines published from 2016, adapting recommendations for a prioritised list of clinical decisions. For questions related to more recent advances, an additional primary literature review was conducted via a targeted search approach. A 2-round modified Delphi process was implemented to achieve consensus for each recommendation, with a final round of edits after consultation with external stakeholders. Results: Recommendations for 25 clinical questions spanning screening, diagnosis, selection of drug regimen, monitoring and follow-up of TB infection and disease were formulated. The availability of results from recent clinical trials led to the inclusion of shorter treatment regimens for TB infection and disease, as well as consensus positions on the role of newer technologies, such as computer-aided detection-artificial intelligence products for radiological screening of TB disease, next-generation sequencing for drug-susceptibility testing, and video observation of treatment. Conclusion: The panel updated recommendations on the management of drug-susceptible TB infection and disease in Singapore.


Subject(s)
Antitubercular Agents , Delphi Technique , Tuberculosis, Pulmonary , Tuberculosis , Humans , Singapore , Antitubercular Agents/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/diagnosis , Tuberculosis/drug therapy , Tuberculosis/diagnosis , Consensus
11.
Eur J Pharmacol ; 978: 176775, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925288

ABSTRACT

The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by µ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.

12.
J Environ Manage ; 362: 121348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824891

ABSTRACT

Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.


Subject(s)
Carbon , Denitrification , Fermentation , Nitrogen , Sewage , Carbon/metabolism , Nitrogen/metabolism , Waste Disposal, Fluid/methods
13.
Cancer Lett ; 597: 217010, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849016

ABSTRACT

In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.

14.
Int J Biol Macromol ; 271(Pt 1): 132666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806081

ABSTRACT

Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.


Subject(s)
Cichlids , Fatty Acid Elongases , Animals , Male , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Cichlids/genetics , Cichlids/metabolism , Lipid Metabolism/genetics , Gene Silencing , Liver/metabolism , Nutrients/metabolism , Fatty Acids/metabolism , Gene Expression Regulation , Amino Acid Sequence , Cloning, Molecular , Acetyltransferases/genetics , Acetyltransferases/metabolism , Gene Knockdown Techniques
15.
Integr Med Res ; 13(2): 101039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38746044

ABSTRACT

Background: Chronic fatigue is a predominant symptom of post COVID-19 condition, or long COVID. We aimed to evaluate the efficacy and safety of Traditional, Complementary and Integrative Medicine (TCIM) for fatigue post COVID-19 infection. Methods: Ten English and Chinese language databases and grey literature were searched up to 12 April 2023 for randomized controlled trials (RCTs). Cochrane "Risk of bias" (RoB) tool was applied. Evidence certainty was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Effect estimates were presented as risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI). Results: Thirteen RCTs with 1632 participants were included. One RCT showed that Bufei Huoxue herbal capsules reduced fatigue (n=129, MD -14.90, 95%CI -24.53 to -5.27), one RCT reported that Ludangshen herbal liquid lowered fatigue (n=184, MD -1.90, 95%CI -2.38 to -1.42), and the other one RCT shown that fatigue disappearance rate was higher with Ludangshen herbal liquid (n=184, RR 4.19, 95%CI 2.06 to 8.53). Compared to traditional Chinese medicine rehabilitation (TCM-rahab) alone, one RCT showed that fatigue symptoms were lower following Qingjin Yiqi granules plus TCM-rehab (n=388, MD -0.48, 95%CI -0.50 to -0.46). Due to concerns with RoB and/or imprecision, the certainty in this evidence was low to very low. No serious adverse events was reported. Conclusions: Limited evidence suggests that various TCIM interventions might reduce post COVID-19 fatigue. Larger, high quality RCTs of longer duration are required to confirm these preliminary findings. Study Registration: The protocol of this review has been registered at PROSPERO: CRD42022384136.

16.
Cell Biosci ; 14(1): 66, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783336

ABSTRACT

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

17.
BMC Cancer ; 24(1): 549, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693523

ABSTRACT

BACKGROUND: Accurate assessment of axillary status after neoadjuvant therapy for breast cancer patients with axillary lymph node metastasis is important for the selection of appropriate subsequent axillary treatment decisions. Our objectives were to accurately predict whether the breast cancer patients with axillary lymph node metastases could achieve axillary pathological complete response (pCR). METHODS: We collected imaging data to extract longitudinal CT image features before and after neoadjuvant chemotherapy (NAC), analyzed the correlation between radiomics and clinicopathological features, and developed models to predict whether patients with axillary lymph node metastasis can achieve axillary pCR after NAC. The clinical utility of the models was determined via decision curve analysis (DCA). Subgroup analyses were also performed. Then, a nomogram was developed based on the model with the best predictive efficiency and clinical utility and was validated using the calibration plots. RESULTS: A total of 549 breast cancer patients with metastasized axillary lymph nodes were enrolled in this study. 42 independent radiomics features were selected from LASSO regression to construct a logistic regression model with clinicopathological features (LR radiomics-clinical combined model). The AUC of the LR radiomics-clinical combined model prediction performance was 0.861 in the training set and 0.891 in the testing set. For the HR + /HER2 - , HER2 + , and Triple negative subtype, the LR radiomics-clinical combined model yields the best prediction AUCs of 0.756, 0.812, and 0.928 in training sets, and AUCs of 0.757, 0.777 and 0.838 in testing sets, respectively. CONCLUSIONS: The combination of radiomics features and clinicopathological characteristics can effectively predict axillary pCR status in NAC breast cancer patients.


Subject(s)
Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Neoadjuvant Therapy , Nomograms , Tomography, X-Ray Computed , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Lymphatic Metastasis/diagnostic imaging , Middle Aged , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Tomography, X-Ray Computed/methods , Neoadjuvant Therapy/methods , Adult , Aged , Retrospective Studies , Radiomics
18.
J Environ Manage ; 359: 121085, 2024 May.
Article in English | MEDLINE | ID: mdl-38728986

ABSTRACT

Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.


Subject(s)
Methane , Sewage , Anaerobiosis , Methane/metabolism , Ferric Compounds , Waste Disposal, Fluid/methods
19.
Water Res ; 257: 121739, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728778

ABSTRACT

The coupling between anammox and nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been considered a sustainable technology for nitrogen removal from sidestream wastewater and can be implemented in both membrane biofilm reactor (MBfR) and granular bioreactor. However, the potential influence of the accompanying hydrogen sulfide (H2S) in the anaerobic digestion (AD)-related methane-containing mixture on anammox/n-DAMO remains unknown. To fill this gap, this work first constructed a model incorporating the C/N/S-related bioprocesses and evaluated/calibrated/validated the model using experimental data. The model was then used to explore the impact of H2S on the MBfR and granular bioreactor designed to perform anammox/n-DAMO at practical levels (i.e., 0∼5% (v/v) and 0∼40 g/S m3, respectively). The simulation results indicated that H2S in inflow gas did not significantly affect the total nitrogen (TN) removal of the MBfR under all operational conditions studied in this work, thus lifting the concern about applying AD-produced biogas to power up anammox/n-DAMO in the MBfR. However, the presence of H2S in the influent would either compromise the treatment performance of the granular bioreactor at a relatively high influent NH4+-N/NO2--N ratio (e.g., >1.0) or lead to increased energy demand associated with TN removal at a relatively low influent NH4+-N/NO2--N ratio (e.g., <0.7). Such a negative effect of the influent H2S could not be attenuated by regulating the hydraulic residence time and should therefore be avoided when applying the granular bioreactor to perform anammox/n-DAMO in practice.


Subject(s)
Bioreactors , Hydrogen Sulfide , Methane , Nitrates , Nitrites , Oxidation-Reduction , Hydrogen Sulfide/metabolism , Anaerobiosis , Methane/metabolism , Nitrates/metabolism , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Wastewater/chemistry
20.
Environ Sci Technol ; 58(24): 10632-10643, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38817146

ABSTRACT

The feasibility of a synergistic endogenous partial denitrification-phosphorus removal coupled anammox (SEPD-PR/A) system was investigated in a modified anaerobic baffled reactor (mABR) for synchronous carbon, nitrogen, and phosphorus removal. The mABR comprising four identical compartments (i.e., C1-C4) was inoculated with precultured denitrifying glycogen-accumulating organisms (DGAOs), denitrifying polyphosphate-accumulating organisms, and anammox bacteria. After 136 days of operation, the chemical oxygen demand (COD), total nitrogen, and phosphorus removal efficiencies reached 88.6 ± 1.0, 97.2 ± 1.5, and 89.1 ± 4.2%, respectively. Network-based analysis revealed that the biofilmed community demonstrated stable nutrient removal performance under oligotrophic conditions in C4. The metagenome-assembled genomes (MAGs) such as MAG106, MAG127, MAG52, and MAG37 annotated as denitrifying phosphorus-accumulating organisms (DPAOs) and MAG146 as a DGAO were dominated in C1 and C2 and contributed to 89.2% of COD consumption. MAG54 and MAG16 annotated as Candidatus_Brocadia (total relative abundance of 16.5% in C3 and 4.3% in C4) were responsible for 74.4% of the total nitrogen removal through the anammox-mediated pathway. Functional gene analysis based on metagenomic sequencing confirmed that different compartments of the mABR were capable of performing distinct functions with specific advantageous microbial groups, facilitating targeted nutrient removal. Additionally, under oligotrophic conditions, the activity of the anammox bacteria-related genes of hzs was higher compared to that of hdh. Thus, an innovative method for the treatment of low-strength municipal and nitrate-containing wastewaters without aeration was presented, mediated by an anammox process with less land area and excellent quality effluent.


Subject(s)
Bioreactors , Carbon , Denitrification , Nitrogen , Phosphorus , Phosphorus/metabolism , Nitrogen/metabolism , Carbon/metabolism , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...