Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
ACS Appl Mater Interfaces ; 16(6): 7489-7499, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299787

ABSTRACT

Maintaining an excellent force-electric response under cyclic bending at low temperatures is still challenging for resistive-type electrically conductive polymer composite-based pressure sensors. In this study, the effect of low temperature on the fatigue failure of flexible MXene/polymer pressure sensors was systematically investigated through the silane functionalization of MXene nanosheets embedded with different polymer matrixes. The results show that the MXene/polymer interfaces are the primary factors affecting the temperature-dependent bending fatigue of the Cu/MXene/polymer/Cu sensor. Using finite element analysis and theoretical calculations, we reveal that the MXene/polymer interfaces are affected by free volume changes and the molecular chain motion under different temperatures. At room temperature, the well-distributed free volume in the polydimethylsiloxane (PDMS) matrix permits local segmental mobility that promotes the affinity between the polymer and MXene. As the temperature decreases, the free volume in the matrix shrinks with less space left for molecular chains to slide relatively, weakening the polymer/MXene interfacial bonding strength. However, for PDMS/MXene sensors with the interface modified using the silane coupling agent KH550, the nanoconstrained structure formed by strong hydrogen bonds and covalent bonds at the PDMS/MXene interface can hinder the mobility of polymer chains, which greatly helps to dissipate the inter/intrachain friction. It thus alleviates the debonding energy dissipation during cyclic bending at subzero temperatures.

2.
BMC Public Health ; 24(1): 187, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38225595

ABSTRACT

BACKGROUND: Magnesium (Mg) is both an essential macro-element and a known catalyst, and it plays a vital role in various physiological activities and mechanisms in relation to chronic kidney disease (CKD). However, epidemiological evidence involving this is limited and not entirely consistent. This study aims to explore the association of serum Mg concentrations with the risk of CKD among general Chinese adults. METHODS: A total of 8,277 Chinese adults were included in the wave of 2009 from the China Health and Nutrition Survey (CHNS). The primary outcome was the risk of CKD, which was defined as the estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2. Multivariable logistic regression model was used to examine the relationship of serum Mg concentrations with the risk of CKD. RESULTS: Included were 8,277 individuals, with an overall CKD prevalence of 11.8% (n = 977). Compared with the first quartile of serum Mg, the multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for participants in the second, third, and fourth quartiles of serum Mg were 0.74 (0.58, 0.93), 0.87 (0.69, 1.11) and 1.29 (1.03, 1.61), respectively. Similar results were observed in our several sensitivity analyses. Restricted cubic spline analysis demonstrated a nonlinear (similar "J"-shaped) association between serum Mg concentrations and the risk of CKD (Pnonlinearity <0.001), with a threshold at around a serum Mg value of 2.2 mg/dL. CONCLUSIONS: Our results suggested a similar "J"-shaped association between serum Mg concentration and the risk of CKD among Chinese adults. Further large prospective studies are needed to verify these findings.


Subject(s)
Magnesium , Renal Insufficiency, Chronic , Adult , Humans , Cross-Sectional Studies , Renal Insufficiency, Chronic/epidemiology , Glomerular Filtration Rate , Health Surveys , Risk Factors
3.
Cancer Commun (Lond) ; 43(10): 1097-1116, 2023 10.
Article in English | MEDLINE | ID: mdl-37539769

ABSTRACT

BACKGROUND: The efficacy of anti-programmed cell death protein 1 (PD-1) immunotherapy in various cancers, including gastric cancer (GC), needs to be potentiated by more effective targeting to enhance therapeutic efficacy or identifying accurate biomarkers to predict clinical responses. Here, we attempted to identify molecules predicting or/and promoting anti-PD-1 therapeutic response in advanced GC (AGC). METHODS: The transcriptome of AGC tissues from patients with different clinical responses to anti-PD-1 immunotherapy and GC cells was analyzed by RNA sequencing. The protein and mRNA levels of the major facilitator superfamily domain containing 2A (MFSD2A) in GC cells were assessed via quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. Additionally, the regulation of anti-PD-1 response by MFSD2A was studied in tumor-bearing mice. Cytometry by Time-of-Flight, multiple immunohistochemistry, and flow cytometry assays were used to explore immunological responses. The effects of MFSD2A on lipid metabolism in mice cancer tissue and GC cells was detected by metabolomics. RESULTS: Higher expression of MFSD2A in tumor tissues of AGC patients was associated with better response to anti-PD-1 immunotherapy. Moreover, MFSD2A expression was lower in GC tissues compared to adjacent normal tissues, and its expression was inversely correlated with GC stage. The overexpression of MFSD2A in GC cells enhanced the efficacy of anti-PD-1 immunotherapy in vivo by reprogramming the tumor microenvironment (TME), characterized by increased CD8+ T cell activation and reduced its exhaustion. MFSD2A inhibited transforming growth factor ß1 (TGFß1) release from GC cells by suppressing cyclooxygenase 2 (COX2)-prostaglandin synthesis, which consequently reprogrammed TME to promote anti-tumor T cell activation. CONCLUSIONS: MFSD2A potentially serves as a predictive biomarker for anti-PD-1 immunotherapy response in AGC patients. MFSD2A may be a promising therapeutic target to potentiate the efficacy of anti-PD-1 immunotherapy by reprogramming the TME to promote T cells activation.


Subject(s)
Stomach Neoplasms , Symporters , Humans , Animals , Mice , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Tumor Microenvironment , CD8-Positive T-Lymphocytes , Immunohistochemistry , Immunotherapy , Symporters/pharmacology
4.
Oral Dis ; 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37357358

ABSTRACT

OBJECTIVE: Obesity can affect periodontal tissues and exacerbate periodontitis. Pyroptosis, a newly identified type of inflammatory cell death, is involved in the development of periodontal inflammation. The saturated fatty acid palmitic acid (PA) is elevated in obese patients. The effect of PA on pyroptosis in periodontal ligament cells (PDLCs) and its underlying mechanisms remain unknown. MATERIALS AND METHODS: Human PDLCs were isolated from healthy individuals and cultured for experiments. The effects of PA on PDLC pyroptosis and the underlying mechanisms were examined by transmission electron microscopy, quantitative real-time PCR and western blotting. RESULTS: The morphology of PDLCs in the PA group indicated pyroptotic characteristics, including swollen cells, plasma membrane rupture and changes in subcellular organelles. PA induced inflammatory responses in PDLCs, as indicated by an increase in IL-1ß in the cell culture supernatant. Furthermore, we found that the pyroptosis-related proteins caspase-1, caspase-4 and GSDMD were involved in PA-induced cell death. GSDMD and caspase-4 inhibitors alleviated pyroptotic death of PDLCs. Moreover, PA promoted NF-κB P65 phosphorylation. A NF-κB inhibitor decreased IL-1ß expression and partly rescued cell death induced by PA. CONCLUSION: PA activated the NF-κB pathway and induced the inflammatory response in PDLCs. Caspase-4/GSDMD mediated PDLC pyroptosis induced by PA.

5.
World J Clin Cases ; 11(9): 1963-1973, 2023 Mar 26.
Article in English | MEDLINE | ID: mdl-36998954

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide, with the fourth highest mortality among all cancers. Reportedly, in addition to adenomas, serrated polyps, which account for 15%-30% of CRCs, can also develop into CRCs through the serrated pathway. Sessile serrated adenomas/polyps (SSAs/Ps), a type of serrated polyps, are easily misdiagnosed during endoscopy. AIM: To observe the difference in the Wnt signaling pathway expression in SSAs/Ps patients with different syndrome types. METHODS: From January 2021 to December 2021, patients with SSAs/Ps were recruited from the Endoscopy Room of Shanghai Traditional Chinese Medicine-Integrated Hospital, affiliated with Shanghai University of Traditional Chinese Medicine. Thirty cases each of large intestine damp-heat (Da-Chang-Shi-Re, DCSR) syndrome and spleen-stomach weakness (Pi-Wei-Xu-Ruo) syndrome were reported. Baseline comparison of the general data, typical tongue coating, colonoscopy findings, and hematoxylin and eosin findings was performed in each group. The expression of the Wnt pathway-related proteins, namely ß-catenin, adenomatous polyposis coli, and mutated in colorectal cancer, were analyzed using immunohistochemistry. RESULTS: Significant differences were observed with respect to the SSAs/Ps size between the two groups of patients with different syndrome types (P = 0.001). The other aspects did not differ between the two groups. The Wnt signaling pathway was activated in patients with SSAs/Ps belonging to both groups, which was manifested as ß-catenin protein translocation into the nucleus. However, SSAs/Ps patients with DCSR syndrome had more nucleation, higher ß-catenin expression, and negative regulatory factor (adenomatous polyposis coli and mutated in colorectal cancer) expression (P < 0.0001) than SSA/P patients with Pi-Wei-Xu-Ruo syndrome. In addition, the SSA/P size was linearly correlated with the related protein expression. CONCLUSION: Patients with DCSR syndrome had a more obvious Wnt signaling pathway activation and a higher risk of carcinogenesis. A high-quality colonoscopic diagnosis was essential. The thorough assessment of clinical diseases can be improved by combining the diseases of Western medicine with the syndromes of traditional Chinese medicine.

7.
Asian J Androl ; 25(1): 78-81, 2023.
Article in English | MEDLINE | ID: mdl-35546287

ABSTRACT

For many years, surgical treatment of buried penis in children has been researched by several scholars, and numerous methods exist. This study aimed to explore the clinical effect of a modified fixation technique in treating buried penis in children. Clinical data of 94 patients with buried penis who were treated using the modified penile fixation technique from March 2017 to February 2019 in Fujian Maternity and Child Health Hospital (Fuzhou, China) were retrospectively collected, compared, and analyzed. Clinical data of 107 patients with buried penis who were treated using traditional penile fixation technique from February 2014 to February 2017 were chosen for comparison. The results showed that at 6 months and 12 months after surgery, the penile lengths in the modified penile fixation group were longer than those in the traditional penile fixation group (both P < 0.05). The incidence of postoperative skin contracture and penile retraction in the modified penile fixation group was less than that in the traditional penile fixation group (P = 0.034 and P = 0.012, respectively). When the two groups were compared in terms of parents' satisfaction scores, the scores for penile size, penile morphology, and voiding status in the modified penile fixation group were higher than those in the traditional penile fixation group at 2-week, 6-month, and 12-month follow-ups after surgery (all P < 0.05). We concluded that the modified penile fixation technique could effectively reduce the incidence of skin contracture and penile retraction and improve the penile length and satisfaction of patients' parents.


Subject(s)
Contracture , Urologic Surgical Procedures, Male , Female , Pregnancy , Male , Humans , Child , Retrospective Studies , Urologic Surgical Procedures, Male/methods , Penis/surgery , China
8.
Asian Journal of Andrology ; (6): 78-81, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-970997

ABSTRACT

For many years, surgical treatment of buried penis in children has been researched by several scholars, and numerous methods exist. This study aimed to explore the clinical effect of a modified fixation technique in treating buried penis in children. Clinical data of 94 patients with buried penis who were treated using the modified penile fixation technique from March 2017 to February 2019 in Fujian Maternity and Child Health Hospital (Fuzhou, China) were retrospectively collected, compared, and analyzed. Clinical data of 107 patients with buried penis who were treated using traditional penile fixation technique from February 2014 to February 2017 were chosen for comparison. The results showed that at 6 months and 12 months after surgery, the penile lengths in the modified penile fixation group were longer than those in the traditional penile fixation group (both P < 0.05). The incidence of postoperative skin contracture and penile retraction in the modified penile fixation group was less than that in the traditional penile fixation group (P = 0.034 and P = 0.012, respectively). When the two groups were compared in terms of parents' satisfaction scores, the scores for penile size, penile morphology, and voiding status in the modified penile fixation group were higher than those in the traditional penile fixation group at 2-week, 6-month, and 12-month follow-ups after surgery (all P < 0.05). We concluded that the modified penile fixation technique could effectively reduce the incidence of skin contracture and penile retraction and improve the penile length and satisfaction of patients' parents.


Subject(s)
Female , Pregnancy , Male , Humans , Child , Retrospective Studies , Urologic Surgical Procedures, Male/methods , Penis/surgery , China , Contracture
9.
Am J Chin Med ; 50(7): 1887-1904, 2022.
Article in English | MEDLINE | ID: mdl-36056468

ABSTRACT

Tetrahydropalmatine (THP) is an active component of Corydalis yanhusuo W. T. Wang. The current study investigates the possible cardioprotective effects of tetrahydropalmatine in acute myocardial ischemia (AMI) rats. The anterior descending coronary artery of SD rats was ligated to establish an AMI model. After two weeks of gavage of THP, cardiac function was determined by echocardiography. The organ index and the infarct size were assessed after the experiment, and the histopathological myocardial tissue changes were observed. In addition, the apoptosis index of myocardial cells was detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The levels of SOD, MDA, CAT, GSH-Px, BNP, and cTn-I were measured by enzyme-linked immunosorbent assay. To determine relevant proteins, the Western blot and molecular docking were applied. Compared with the model group, THP could enhance rat cardiac ejection function to improve cardiac function, drastically lessen the infarct size, reduce myocardial cell damage and inflammatory cell infiltration. THP might also prevent ischemic myocardial damage by inhibiting myocardial cell apoptosis and efficiently reducing oxidative stress. Specifically, THP could decrease MDA, BNP, c-TnI activities, as well as the expression of Bax and Caspase-3 protein, while increasing SOD, GSH-Px, CAT activities, and Bcl-2 level. Furthermore, THP could significantly promote the phosphorylation of PI3K and Akt proteins. The involved pathways and proteins have also been verified through molecular docking. According to these findings, THP may preserve the myocardium due to its anti-oxidant and anti-apoptotic properties.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Rats , Animals , Molecular Docking Simulation , Rats, Sprague-Dawley , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/pathology , Apoptosis , Myocardial Ischemia/pathology , Superoxide Dismutase/metabolism
10.
J Cell Mol Med ; 26(12): 3387-3395, 2022 06.
Article in English | MEDLINE | ID: mdl-35524577

ABSTRACT

Solasonine, a steroidal glycoalkaloid isolated from the herbal plant Solanum nigrum Linn., has shown active against multiple human cancers; however, there is little knowledge on the activity of solasonine against gastric cancer until now. This study aimed to examine the effect of solasonine on the biological behaviours of human gastric cancer SGC-7901 cells. The results showed that solasonine suppressed SGC-7901 cell proliferation in a dose-dependent manner. Solasonine treatment mainly induced the cell cycle arrest at G2 phase in SGC-7901 cells. Treatment with solasonine resulted in significant down-regulation of Bcl-2 and Caspase-3 protein expression and reduced Bax and Bcl-xL protein expression in SGC-7901 cells. Solasonine shows a comparable inhibitory effect on the proliferation of human gastric cancer SGC-7901 cells with cisplatin, and solasonine induces of SGC-7901 cell apoptosis through triggering the endoplasmic reticulum stress pathway and the mitochondrial pathway. Our data indicate that solasonine may be a promising agent for the treatment of gastric cancer.


Subject(s)
Stomach Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Mitochondria/metabolism , Solanaceous Alkaloids , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism
11.
Int Immunopharmacol ; 99: 107901, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34273637

ABSTRACT

Periodontitis is initiated by serious and sustained bacterial infection and ultimately results in chronic immune-mediated inflammation, tissue destruction, and bone loss. The pathogenesis of periodontitis remains unclear. Host immunological responses to periodontal bacteria ultimately determine the severity and mechanisms governing periodontitis progression. This study aimed to clarify the effect of the hypoxia-inducible factor-1α (HIF-1α) activator dimethyloxalylglycine (DMOG) on a mouse periodontitis model and its underlying role in macrophage polarization. qRT-PCR analysis showed that DMOG inhibited the M1-like polarization of both RAW264.7 macrophages and murine bone marrow macrophages (BMMs) and downregulated TNF-α, IL-6, CD86, and MCP-1 expression in vitro. Immunofluorescence staining and flow cytometry also confirmed the less percentage of F4/80 + CD86 + cells after DMOG treatment. The phosphorylation of NF-κB pathway was also inhibited by DMOG with higher level of HIF-1α expression. Furthermore, mice treated with DMOG showed decreased alveolar bone resorption in the experimental periodontitis model, with significant increases in alveolar bone volume/tissue volume (BV/TV) and bone mineral density (BMD). DMOG treatment of mice decreased the ratio of M1/M2 (CD86+/CD206+) macrophages in periodontal tissues, resulting in the downregulation of proinflammatory cytokines such as TNF-α and IL-6 and increased levels of anti-inflammatory factors such as IL-4 and IL-10. DMOG treatment promoted the number of HIF-1α-positive cells in periodontal tissues. This study demonstrated the cell-specific roles of DMOG in macrophage polarization in vitro and provided insight into the mechanism underlying the protective effect of DMOG in a model of periodontitis.


Subject(s)
Alveolar Bone Loss/drug therapy , Amino Acids, Dicarboxylic/therapeutic use , Macrophages/drug effects , Periodontitis/drug therapy , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/immunology , Alveolar Bone Loss/pathology , Amino Acids, Dicarboxylic/pharmacology , Animals , Cytokines/genetics , Hypoxia-Inducible Factor 1, alpha Subunit , Macrophages/immunology , Male , Maxilla/diagnostic imaging , Maxilla/pathology , Mice , Mice, Inbred C57BL , NF-kappa B/immunology , Periodontitis/diagnostic imaging , Periodontitis/immunology , Periodontitis/pathology , RAW 264.7 Cells , Signal Transduction/drug effects , X-Ray Microtomography
12.
J Sci Food Agric ; 101(15): 6525-6532, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34002396

ABSTRACT

BACKGROUND: Chinese te-flavor baijiu (CTF), the most famous Chinese baijiu in Jiangxi province, China, is made from a unique daqu. Its characteristic style is closely related to the daqu used for fermentation. However, current studies on the effects of different production seasons on microbial communities, physicochemical indices, and volatile compounds in CTF daqu are very rare. RESULTS: The relationships of microbial communities, physicochemical indices, and volatile compounds in CTF daqu produced in summer (July and August) and autumn (September and October) were studied. The results of Illumina MiSeq sequencing indicated that there was greater bacterial diversity in the CTF daqu-7 (produced in July) and CTF daqu-8 (produced in August) and greater fungal diversity in the CTF daqu-9 (produced in September) and CTF daqu-10 (produced in October). The physicochemical indices of CTF daqu produced in different seasons were significantly different. It was determined that CTF daqu-9 had the highest esterification and liquefaction abilities. A total of 44 volatile compounds, including alcohols, esters, aldehydes, and ketones were identified in CTF daqu produced during different seasons. Among them, CTF daqu-9 had the greatest alcohol content. CONCLUSION: September (early autumn) is the best production period for CTF daqu. The results of the study provide a theoretical basis for the standardized and uniform production of Chinese baijiu. © 2021 Society of Chemical Industry.


Subject(s)
Bacteria/isolation & purification , Flavoring Agents/chemistry , Fungi/isolation & purification , Microbiota , Volatile Organic Compounds/chemistry , Wine/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , China , Fermentation , Flavoring Agents/metabolism , Fungi/classification , Fungi/genetics , Fungi/metabolism , Humans , Seasons , Taste , Volatile Organic Compounds/metabolism , Wine/analysis
13.
Front Microbiol ; 11: 643, 2020.
Article in English | MEDLINE | ID: mdl-32373091

ABSTRACT

Shiraia bambusicola has long been used as a traditional Chinese medicine and its major medicinal active metabolite is hypocrellin, which exhibits outstanding antiviral and antitumor properties. Here we report the 32 Mb draft genome sequence of S. bambusicola S4201, encoding 11,332 predicted genes. The genome of S. bambusicola is enriched in carbohydrate-active enzymes (CAZy) and pathogenesis-related genes. The phylogenetic tree of S. bambusicola S4201 and nine other sequenced species was constructed and its taxonomic status was supported (Pleosporales, Dothideomycetes). The genome contains a rich set of secondary metabolite biosynthetic gene clusters, suggesting that strain S4201 has a remarkable capacity to produce secondary metabolites. Overexpression of the zinc finger transcription factor zftf, which is involved in hypocrellin A (HA) biosynthesis, increases HA production when compared with wild type. In addition, a new putative HA biosynthetic pathway is proposed. These results provide a framework to study the mechanisms of infection in bamboo and to understand the phylogenetic relationships of S. bambusicola S4201. At the same time, knowledge of the genome sequence may potentially solve the puzzle of HA biosynthesis and lead to the discovery of novel genes and secondary metabolites of importance in medicine and agriculture.

14.
Ying Yong Sheng Tai Xue Bao ; 30(4): 1319-1326, 2019 Apr.
Article in Chinese | MEDLINE | ID: mdl-30994294

ABSTRACT

To reveal the effects of coupling nitrogen (N) application and aerated irrigation on soil CO2 and N2O emission, and their relationship with soil temperature and moisture, an experiment was conducted in greenhouse melon fields by using the method of static chamber/gas chromatography to determine the CO2 and N2O emissions of different nitrogen rates under aerated irrigation. There were two irrigation factors (AI: aerated irrigation; CK: conventional irrigation) and three N levels (N1: 0; N2: 150 kg·hm-2, the traditional nitrogen application rate was 2/3; N3: 225 kg·hm-2, traditional nitrogen application rate). The results showed that soil CO2 and N2O emissions in AI treatment were higher than those in CK, but no significant difference was observed between the two irrigation methods. Under the same irrigation method, soil CO2 and N2O emission significantly increased with the increases of N application rate, indicating that N application was the main influencing factor for CO2 and N2O emissions. There were significant positive relationships between soil N2O emissions and soil temperature and water filled pore space (WFPS) under the AI treatment. Soil CO2 emission were positively correlated with soil temperature. When N application reduced to N2 rate under AI treatment, the yield was increased by 6.9% and the greenhouse warming potential was reduced from 9544.82 kg·hm-2 to 9340.72 kg·hm-2. Thus, it is feasible to reduce the amount of N fertilizer under AI treatment to mitigate greenhouse gas emission in agricultural production systems.


Subject(s)
Agriculture/methods , Carbon Dioxide/analysis , Cucurbitaceae/growth & development , Nitrous Oxide/analysis , Agricultural Irrigation , Fertilizers , Nitrogen , Soil
15.
J Microbiol ; 57(2): 154-162, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30706344

ABSTRACT

Hypocrellin A (HA) is a perylenequinone (PQ) isolated from Shiraia bambusicola that shows antiviral and antitumor activities, but its application is limited by the low production from wild fruiting body. A gene overexpressing method was expected to augment the production rate of HA in S. bambusicola. However, the application of this molecular biology technology in S. bambusicola was impeded by a low genetic transformation efficiency and little genomic information. To enhance the plasmid transformant ratio, the Polyethylene Glycol-mediated transformation system was established and optimized. The following green fluorescent protein (GFP) analysis showed that the gene fusion expression system we constructed with a GAPDH promoter Pgpd1 and a rapid 2A peptide was successfully expressed in the S. bambusicola S4201 strain. We successfully obtained the HA high-producing strains by overexpressing O-methyltransferase/FAD-dependent monooxygenase gene (mono) and the hydroxylase gene (hyd), which were the essential genes involved in our putative HA biosynthetic pathway. The overexpression of these two genes increased the production of HA by about 200% and 100%, respectively. In general, this study will provide a basis to identify the genes involved in the hypocrellin A biosynthesis. This improved transformation method can also be used in genetic transformation studies of other fungi.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Biosynthetic Pathways/genetics , Genes, Fungal/genetics , Perylene/analogs & derivatives , Quinones/metabolism , Ascomycota/enzymology , Ascomycota/growth & development , Gene Expression Regulation, Fungal , Gene Fusion , Genetic Vectors , Methyltransferases/genetics , Mixed Function Oxygenases/genetics , Perylene/metabolism , Phenol , Transformation, Genetic
16.
Chemosphere ; 193: 840-846, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29874757

ABSTRACT

The presence of antibiotics in wastewater has been widely confirmed. Membrane bioreactor (MBR), as an efficient wastewater treatment technology, has attracted increasing interest in its ability to remove antibiotics in recent years. However, its long-term operation stability and the underlying mechanisms for antibiotics removal are still poorly understood. In this study, a hollow fiber MBR was used to treat low concentration sulfamethazine (SMZ) contained wastewater. The long-term effects of various SMZ concentrations on nutrients removal, SMZ degradation, and sludge characteristics were investigated. During the 244 days operation, the overall SMZ removal efficiency could reach 95.4 ± 4.5% under various SMZ concentrations and hydraulic retention times. The reactor exhibited high chemical oxygen demand and NH4+-N removal efficiencies, which reached 93.0% and 96.2%, respectively. A sludge concentration of 4.1 ± 0.3 g/L was maintained in the system without excess sludge discharge. The dosage of SMZ had obvious effect on sludge characteristics. The contents of extracellular polymeric substances (EPS) in MBR decreased after a long-term operation of the reactor under SMZ pressure. The low sludge concentration and the reduced EPS content were also beneficial for mitigating membrane fouling. Thus, this study provides a low-cost, efficient and simple approach to treat SMZ-contained wastewater.


Subject(s)
Bioreactors/standards , Sulfamethazine/chemistry , Wastewater/chemistry , Water Purification/methods
17.
J Stroke Cerebrovasc Dis ; 27(7): e148-e149, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29555398

ABSTRACT

Thalamic infarcts, accounting for approximately 14% of lacunar infarcts, exhibit varied clinical manifestations due to complex anatomy of nuclei and varying blood supply. Pure and combined types of thalamic infarctions have been summarized in some paper, but information of cerebral angiography was not mentioned. Here we report a rare case of combined tuberothalamic and paramedian artery occlusion presenting with ipsilateral ptosis and contralateral ataxic hemiparesis.


Subject(s)
Blepharoptosis/diagnosis , Brain Infarction/diagnosis , Paresis/diagnosis , Aged, 80 and over , Blepharoptosis/drug therapy , Blepharoptosis/etiology , Brain Infarction/drug therapy , Brain Infarction/etiology , Cerebral Arteries/diagnostic imaging , Diagnosis, Differential , Functional Laterality , Humans , Male , Mesencephalon/diagnostic imaging , Paresis/drug therapy , Paresis/etiology , Thalamus/diagnostic imaging
18.
Cancer Cell Int ; 18: 16, 2018.
Article in English | MEDLINE | ID: mdl-29434522

ABSTRACT

BACKGROUND: Recent studies have shown that laminin subunit alpha 4 (LAMA4) plays an important role in carcinogenesis. However, its molecular biological function in triple-negative breast cancer (TNBC) has not been entirely clarified. This study investigated the expression of LAMA4 in TNBC and its effect on cell proliferation, migration and invasion. Furthermore, we also identified the potential miRNA directly targeting LAMA4. METHODS: Western blot, Real-time quantitative PCR (qPCR) and immunohistochemical staining (IHC) were used to detect the expression of LAMA4 in TNBC. The effects of LAMA4 on TNBC cell proliferation, migration and invasion were also explored in vitro. The potential miRNA that targets LAMA4 was determined by dual luciferase reporter assay and verified by qPCR and western blot analysis. RESULTS: Our study showed LAMA4 mRNA (p = 0.001) and protein (p = 0.005) expression in TNBC tissue samples were elevated compared with adjacent normal tissue samples, and LAMA4 was mainly expressed in the cytoplasm of breast carcinoma cells. Knockdown of LAMA4 inhibited TNBC cell proliferation, migration and invasion in vitro. Moreover, further study revealed that LAMA4 was a putative target of miR-539, and miR-539 negatively regulated LAMA4 expression by directly targeting its 3'-UTR. CONCLUSIONS: Our study suggested that miR-539 suppressed the expression of LAMA4. LAMA4 plays an important role in tumor progression and may be an important target in treatment of TNBC.

19.
Chemosphere ; 140: 79-84, 2015 Dec.
Article in English | MEDLINE | ID: mdl-24880609

ABSTRACT

A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater.


Subject(s)
Bioreactors , Chlorophenols/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Anaerobiosis , Biofilms , Biological Oxygen Demand Analysis , Charcoal , Chlorophenols/analysis , Conservation of Energy Resources/methods , Membranes, Artificial , Wastewater/microbiology , Water Pollutants, Chemical/analysis
20.
Water Res ; 47(15): 5794-800, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23886542

ABSTRACT

How to mitigate membrane fouling remains a critical challenge for widespread application of membrane bioreactors. Herein, an antifouling electrochemical membrane bioreactor (EMBR) was developed based on in-situ utilization of the generated electricity for fouling control. In this system, a maximum power density of 1.43 W/m(3) and a current density of 18.49 A/m(3) were obtained. The results demonstrate that the formed electric field reduced the deposition of sludge on membrane surface by enhancing the electrostatic repulsive force between them. The produced H2O2 at the cathode also contributed to the fouling mitigation by in-situ removing the membrane foulants. In addition, 93.7% chemical oxygen demand (COD) removal and 96.5% NH4(+)-N removal in average as well as a low effluent turbidity of below 2 NTU were achieved, indicating a good wastewater treatment performance of the EMBR. This work provides a proof-of-concept study of an antifouling MBR with high wastewater treatment efficiency and electricity recovery, and implies that electrochemical control might provide another promising avenue to in-situ suppress the membrane fouling in MBRs.


Subject(s)
Bioreactors/microbiology , Membranes, Artificial , Sewage/microbiology , Biological Oxygen Demand Analysis , Electricity , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...