Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Oral Health ; 22(1): 470, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335339

ABSTRACT

BACKGROUND: The aim of the study was to investigate whether the citric acid and rough surface have a synergistic effect leading to severe wear behavior of resin composite. MATERIALS AND METHODS: Disk-shaped (Ø15 × 1.5 mm) specimens of resin composite (n = 12) with different initial roughness were prepared. Reciprocating ball-on-flat wear tests were performed under distilled water and citric acid (pH = 5.5) respectively. The coefficient of friction (COF), wear volume loss, and duration of the running-in period were quantified to assess the wear performance. And the values were analyzed with one-way ANOVA (α = 0.05). Regression analysis was applied to examine the influence of Ra values and mediums on the wear data. The wear morphology was analyzed by scanning electron microscopy and a 3D profilometer. RESULTS: The average COF was higher in distilled water than in citric acid but was independent of the surface roughness. For the composite, the volume loss of worn area and running-in period increased with surface roughness when tested under distilled water. However, these increasing trends were not found in citric acid. All specimens exhibited mild wear behavior with low COF and less superficial abrasion in acidic medium. CONCLUSIONS: The effect of initial roughness on wear behavior depends on the medium. In distilled water, resin composites with high initial roughness exhibit a longer running-in time, which eventually leads to a significant increase in material loss. The adverse effects of high roughness can be alleviated by the lubrication of citric acid, which can maintain a mild wear behavior regardless of initial surface roughness.


Subject(s)
Composite Resins , Water , Humans , Surface Properties , Materials Testing , Microscopy, Electron, Scanning , Citric Acid
2.
J Mech Behav Biomed Mater ; 135: 105469, 2022 11.
Article in English | MEDLINE | ID: mdl-36166938

ABSTRACT

The wear behavior of dental restorative materials is highly related to the biolubricating medium in the oral environment. Bacteria, along with their metabolic products, are essential substances in the oral cavity and have not been studied as a potential factor affecting lubrication performance during mastication. In this study, the effects of the Streptococcus mutans bacterial cells and their metabolites were investigated on the wear behavior of resin composites, polymer-infiltrated ceramic networks and zirconium-lithium silicate glass-ceramics. A reciprocating friction test and quantitative analysis of the wear morphology were utilized to determine the coefficient of friction (COF) and wear resistance of the test materials. The results showed that the bacterial metabolite medium significantly reduces the COF and wear rate of the three restorative materials and provide better protection against superficial abrasion. When tested under lactic acid medium, a key acid production in bacterial metabolites, similar wear reduction results were observed in the three materials, which confirmed that lactic acid should be accountable for the excellent lubricating property of bacterial metabolites. Furthermore, the resin composite with lower wettability exhibited a more significant wear reduction than the other two materials when lubricating with a bacterial metabolite medium. These findings provide novel insights into the biological basis of lubrication mechanisms in the oral cavity under high-loading and low-velocity conditions.


Subject(s)
Streptococcus mutans , Zirconium , Ceramics , Composite Resins , Dental Materials , Dental Porcelain , Lactic Acid , Lithium , Materials Testing , Polymers , Silicates , Surface Properties
3.
J Mater Sci Mater Med ; 33(9): 63, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36065035

ABSTRACT

Current evidence has suggested that diabetes increases the risk of implanting failure, and therefore, appropriate surface modification of dental implants in patients with diabetes is crucial. TiO2 nanotube (TNT) has an osteogenic nanotopography, and its osteogenic properties can be further improved by loading appropriate drugs. Cinnamaldehyde (CIN) has been proven to have osteogenic, anti-inflammatory, and anti-bacterial effects. We fabricated a pH-responsive cinnamaldehyde-TiO2 nanotube coating (TNT-CIN) and hypothesized that this coating will exert osteogenic, anti-inflammatory, and anti-bacterial functions in a simulated diabetes condition. TNT-CIN was constructed by anodic oxidation, hydroxylation, silylation, and Schiff base reaction to bind CIN, and its surface characteristics were determined. Conditions of diabetes and diabetes with a concurrent infection were simulated using 22-mM glucose without and with 1-µg/mL lipopolysaccharide, respectively. The viability and osteogenic differentiation of bone marrow mesenchymal stem cells, polarization and secretion of macrophages, and resistance to Porphyromonas gingivalis and Streptococcus mutans were evaluated. CIN was bound to the TNT surface successfully and released better in low pH condition. TNT-CIN showed better osteogenic and anti-inflammatory effects and superior bacterial resistance than TNT in a simulated diabetes condition. These findings indicated that TNT-CIN is a promising, multifunctional surface coating for patients with diabetes needing dental implants. Graphical abstract.


Subject(s)
Dental Implants , Diabetes Mellitus , Nanotubes , Acrolein/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Humans , Hydrogen-Ion Concentration , Nanotubes/chemistry , Osteogenesis , Surface Properties , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...