Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
BMC Genomics ; 25(1): 612, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890564

ABSTRACT

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an intermediate phenotype of hypertension and is a predictor of long-term cardiovascular events and death. However, the genetic structures of SSBP are uncertain, and it is difficult to precisely diagnose SSBP in population. So, we aimed to identify genes related to susceptibility to the SSBP, construct a risk evaluation model, and explore the potential functions of these genes. METHODS AND RESULTS: A genome-wide association study of the systemic epidemiology of salt sensitivity (EpiSS) cohort was performed to obtain summary statistics for SSBP. Then, we conducted a transcriptome-wide association study (TWAS) of 12 tissues using FUSION software to predict the genes associated with SSBP and verified the genes with an mRNA microarray. The potential roles of the genes were explored. Risk evaluation models of SSBP were constructed based on the serial P value thresholds of polygenetic risk scores (PRSs), polygenic transcriptome risk scores (PTRSs) and their combinations of the identified genes and genetic variants from the TWAS. The TWAS revealed that 2605 genes were significantly associated with SSBP. Among these genes, 69 were differentially expressed according to the microarray analysis. The functional analysis showed that the genes identified in the TWAS were enriched in metabolic process pathways. The PRSs were correlated with PTRSs in the heart atrial appendage, adrenal gland, EBV-transformed lymphocytes, pituitary, artery coronary, artery tibial and whole blood. Multiple logistic regression models revealed that a PRS of P < 0.05 had the best predictive ability compared with other PRSs and PTRSs. The combinations of PRSs and PTRSs did not significantly increase the prediction accuracy of SSBP in the training and validation datasets. CONCLUSIONS: Several known and novel susceptibility genes for SSBP were identified via multitissue TWAS analysis. The risk evaluation model constructed with the PRS of susceptibility genes showed better diagnostic performance than the transcript levels, which could be applied to screen for SSBP high-risk individuals.


Subject(s)
Blood Pressure , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Blood Pressure/genetics , Gene Expression Profiling , Hypertension/genetics , Transcriptome , Polymorphism, Single Nucleotide , Male , Risk Assessment , Female , Sodium Chloride, Dietary/adverse effects
2.
Insect Sci ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388801

ABSTRACT

The two-spotted spider mite (Tetranychus urticae) is one of the most well-known pesticide-resistant agricultural pests, with resistance often attributed to changes such as target-site mutations and detoxification activation. Recent studies show that pesticide resistance can also be influenced by symbionts, but their involvement in this process in spider mites remains uncertain. Here, we found that infection with Wolbachia, a well-known bacterial reproductive manipulator, significantly increased mite survival after exposure to the insecticides abamectin, cyflumetofen, and pyridaben. Wolbachia-infected (WI) mites showed higher expression of detoxification genes such as P450, glutathione-S-transferase (GST), ABC transporters, and carboxyl/cholinesterases. RNA interference experiments confirmed the role of the two above-mentioned detoxification genes, TuCYP392D2 and TuGSTd05, in pesticide resistance. Increased GST activities were also observed in abamectin-treated WI mites. In addition, when wild populations were treated with abamectin, WI mites generally showed better survival than uninfected mites. However, genetically homogeneous mites with different Wolbachia strains showed similar survival. Finally, abamectin treatment increased Wolbachia abundance without altering the mite's bacterial community. This finding highlights the role of Wolbachia in orchestrating pesticide resistance by modulating host detoxification. By unraveling the intricate interplay between symbionts and pesticide resistance, our study lays the groundwork for pioneering strategies to combat agricultural pests.

3.
J Am Chem Soc ; 146(4): 2325-2332, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38232384

ABSTRACT

The only known method for the dearomative trifluoromethoxylation of indoles is preliminary, with only one substrate successfully undergoing the reaction. In this study, we not only developed a broadly applicable method for indole dearomative trifluoromethoxylation but also achieved divergent trifluoromethoxylation by fine-tuning the reaction conditions. Under optimized conditions, with a silver salt and an easily handled OCF3 reagent, various indoles smoothly underwent dearomatization to afford a diverse array of ditrifluoromethoxylated indolines in 50-84% isolated yields with up to 37:1 diastereoselectivity, and fluorinated trifluoromethoxylated indolines were obtained with exclusive trans selectivity. In addition, the reaction conditions were compatible with other heteroaromatic rings as well as styrene moieties.

4.
Mol Ecol ; 33(2): e17202, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37947376

ABSTRACT

Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.


Subject(s)
Acetobacter , Gluconates , Microbiota , Animals , Drosophila , Drosophila melanogaster/genetics , Acetobacter/genetics , Fruit , Larva/microbiology , Body Weight
5.
Microb Ecol ; 87(1): 1, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991578

ABSTRACT

Microbes play a key role in the biology, ecology, and evolution of arthropods. Despite accumulating data on microbial communities in arthropods that feed on plants using piercing-sucking mouthparts, we still lack a comprehensive understanding of the composition and assembly factors of the microbiota, particularly in field-collected spider mites. Here, we applied 16S rRNA amplicon sequencing to investigate the characters of the bacterial community in 140 samples representing 420 mite individuals, belonging to eight Tetranychus species (Acari: Tetranychidae) collected from 26 sites in China. The results showed that the bacterial composition of spider mites varied significantly among different species, locations, and plants. The environment showed a significant influence on the bacterial community of spider mites, with different relative contributions. Latitude and precipitation were found to be the main factors influencing the bacterial community composition. The dissimilarity of bacterial community and geographical distance between mite locations were significantly correlated. The assembly of spider mite bacterial communities seemed to be mainly influenced by stochastic processes. Furthermore, the symbiont Cardinium was found to be important in shaping the microbiota of many Tetranychus species. The relative abundance of Cardinium was > 50% in T. viennensis, T. urticae G, T. urticae R, and T. turkestani. Removing Cardinium reads from our analysis significantly changed Shannon diversity index and weighted beta diversity in these species. Altogether, this study provides novel insights into bacterial diversity patterns that contribute to our knowledge of the symbiotic relationships between arthropods and their bacterial communities.


Subject(s)
Arthropods , Microbiota , Tetranychidae , Humans , Animals , RNA, Ribosomal, 16S/genetics , Bacteroidetes/genetics
6.
BMC Public Health ; 23(1): 1727, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670230

ABSTRACT

BACKGROUND: Disability was a major public health problem in China. However, the prevalence of disabilities in community-dwelling adults and their relationships to chronic physical conditions were unclear. We aimed to estimate the prevalence of disabilities and associated factors among a large community-based cohort in China. METHODS: Participants who were local permanent residents aged 18 years or above and completed the disability assessments were selected from the Cohort study on Chronic Disease of Communities Natural Population in Beijing, Tianjin and Hebei (CHCN-BTH) from 2017 to 2019. Disability was assessed using five questions about impairments and activity limitations based on the International Classification of Functioning (ICF), Disability and Health. Univariate, multivariate and multilevel logistic regressions were conducted to estimate the associations between disabilities and associated factors. RESULTS: Totally, 12,871 community-dwelling adults completed the survey. Among of them, 12.9% (95% CI: 12.3%-13.5%) reported having any disability. The prevalence of any disability was significantly higher in participants who were older age, widowed, retired and smokers, had higher BMI, average monthly income < 5000 RMB, lower education level, lower physical exercise frequency and heavy physical labor. Multilevel logistic regressions showed that there were significant associations between disabilities with chronic physical conditions, especially in the vision impairment with lower back pain, and hearing impairment as well as difficulty walking without special equipment with injuries. CONCLUSIONS: Many Chinese adults suffered from disabilities. Sustained efforts should be made to develop specific population-based health promotion and prevention programs for disabilities in China. TRAIL REGISTRATION: ChiCTR1900024725 (25/07/2019).


Subject(s)
Disabled Persons , Retirement , Adult , Humans , Cohort Studies , Prevalence , China , East Asian People
7.
J Affect Disord ; 341: 176-184, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37598715

ABSTRACT

BACKGROUND: We aimed to determine whether depressive, anxiety, stress symptoms were associated with the risk of elevated blood pressure by performing longitudinal cohort and Mendelian Randomization (MR) analyses. METHODS: We used data from the Cohort Study on Chronic Disease of Community Natural Population in the Beijing-Tianjin-Hebei region (CHCN-BTH) from 2017 to 2021. The Depression-Anxiety-Stress Scale was used to evaluate the depressive, anxiety, stress symptoms. The longitudinal associations between depressive, anxiety, stress symptoms and elevated blood pressure were estimated using Cox proportional regression models. Two-sample MR analysis was performed using the Inverse-variance weighted (IVW), weighted median, and MR-Egger to explore the causal relationships between depressive, anxiety, stress symptoms and elevated blood pressure. RESULTS: In total, 5624 participants were included. The risk of SBP ≥ 140 mmHg or DBP ≥ 90 mmHg was significantly higher in participants with baseline anxiety symptoms (HR = 1.48, 95 % CI: 1.03 to 2.12, P = 0.033; HR = 1.56, 95 % CI: 1.05 to 2.32, P = 0.028), especially in men and individuals with higher educational levels, independent of baseline depression and anxiety at the two-year follow-up. The two-sample MR analysis showed positive associations between depressive, anxiety, stress symptoms and elevated blood pressure. LIMITATION: Self-reported mental health symptoms, relatively shorter follow-up duration and the European-derived genome-wide association study data for MR analysis. CONCLUSIONS: Anxiety symptoms were positively associated with elevated blood pressures in the longitudinal analysis independent of depression, stress, and other confounders. The results were verified in MR analysis, providing evidence for causal effects of anxiety symptoms on the risk of elevated blood pressure.


Subject(s)
Hypertension , Mendelian Randomization Analysis , Male , Humans , Blood Pressure , Cohort Studies , Genome-Wide Association Study , Anxiety/epidemiology , Anxiety/genetics , Hypertension/epidemiology , Hypertension/genetics
8.
Insect Sci ; 30(6): 1689-1700, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36744754

ABSTRACT

The endosymbiont Wolbachia manipulates host reproduction by several strategies, one of the most important of which is cytoplasmic incompatibility (CI). CI can be rescued when Wolbachia-infected males mate with females infected with the same Wolbachia strain. However, the potential rescue mechanism of CI in the small brown planthopper Laodelphax striatellus is unclear. In this study, comparative transcriptome analysis was applied to explore the effect of Wolbachia on L. striatellus eggs. A total of 1387 differentially expressed genes were identified. RNA interference of 7 Wolbachia-upregulated key planthopper genes reduced egg reproduction, suggesting that Wolbachia might improve fecundity in L. striatellus by affecting these 7 genes. Suppressing the expression of another upregulated gene, NDUFA8 (encoding NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 8-like) by RNA interference significantly increased the mortality of early embryos without affecting the number of deposited eggs. Wolbachia infection upregulated the mRNA level of NDUFA8, and dsNDUFA8 treatment of Wolbachia-infected females recreated CI-like symptoms, suggesting that NDUFA8 is associated with the rescue phenotype. Because all L. striatellus populations worldwide are infected with Wolbachia, NDUFA8 is a potential pest control target.


Subject(s)
Hemiptera , Wolbachia , Female , Male , Animals , Wolbachia/genetics , Hemiptera/genetics , Hemiptera/metabolism , Fertility , Reproduction , Gene Expression Profiling
9.
Pest Manag Sci ; 79(1): 315-323, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36151871

ABSTRACT

BACKGROUND: The endosymbiont Wolbachia is known for manipulating host reproduction. Wolbachia also can affect host fitness by mediating interactions between plant and herbivores. However, it remains unclear whether saliva proteins are involved in this process. RESULTS: We found that Wolbachia infection decreased the number of deposited eggs but increased the egg hatching rate in the spider mite Tetranychus urticae Koch (Acari: Tetranychidae), a cosmopolitan pest that infects >1000 species of plants. Transcriptomic and proteomic analyses revealed that Wolbachia-infected mites upregulated the gene expression levels of many T. urticae salivary proteins including a cluster of Tetranychidae-specific, functionally uncharacterized SHOT1s (secreted host-responsive proteins of Tetranychidae). The SHOT1 genes were expressed more in the feeding stages (nymphs and adults) of mites than in eggs and highly enriched in the proterosomas. RNA interference experiments showed that knockdown of SHOT1s significantly decreased Wolbachia density, increased the number of deposited eggs and decreased the egg hatching rate. CONCLUSION: Together, these results indicate that SHOT1s are positively correlated with Wolbachia density and account for Wolbachia-mediated phenotypes. Our results provide new evidence that herbivore salivary proteins are related to Wolbachia-mediated manipulations of host performance on plants. © 2022 Society of Chemical Industry.


Subject(s)
Tetranychidae , Wolbachia , Animals , Proteomics , Salivary Proteins and Peptides/genetics
10.
Plant Physiol ; 191(1): 660-678, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36269175

ABSTRACT

Herbivore-associated molecular patterns (HAMPs) enable plants to recognize herbivores and may help plants adjust their defense responses. Here, we report on herbivore-induced changes in a protein disulfide isomerase (PDI) widely distributed across arthropods. PDI from the spider mite Tetranychus evansi (TePDI), a mesophyll-feeding agricultural pest worldwide, triggered immunity in multiple Solanaceae plants. TePDI-mediated cell death in Nicotiana benthamiana required the plant signaling proteins SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90), but was suppressed by spider mite effectors Te28 and Te84. Moreover, PDIs from phylogenetically distinct herbivorous and nonherbivorous arthropods triggered plant immunity. Finally, although PDI-induced plant defenses impaired the performance of spider mites on plants, RNAi experiments revealed that PDI genes are essential for the survival of mites and whiteflies. Our findings indicate that plants recognize evolutionarily conserved HAMPs to activate plant defense and resist pest damage, pointing to opportunities for broad-spectrum pest management.


Subject(s)
Herbivory , Tetranychidae , Animals , Protein Disulfide-Isomerases/genetics , Plants , Nicotiana/genetics , Plant Proteins/genetics , Tetranychidae/physiology
11.
Insect Sci ; 30(2): 351-364, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35980307

ABSTRACT

Ras opposite (Rop) is known to play an essential role in regulating vesicle trafficking, including synaptic transmission and general secretion. The fundamental roles of Rop have been confirmed by the observation that null mutations in many organisms generate lethal phenotypes during embryogenesis. However, the effects of Rop during the postembryonic stages, especially in non-model organisms, remain largely unknown. Here, we provide new data that enhance our understanding of Rop's roles in the adults of multiple species of Tetranychus spider mites (Acari: Tetranychidae), a class of notorious agricultural pests. Our in silico and experimental evidence demonstrated that Rop is under purifying selection and is highly conserved in Tetranychus spp. RNA interference experiments showed that Rop is required for maintaining normal fecundity but has no significant effect on survival. We further demonstrate that knockdown of Rop darkens the body color of spider mites and blocks the excretion of fecal pellets, which is likely to be related to an abnormality in the excretion of food waste in the digestive system. Overall, our findings clarify novel functions of a vesicle trafficking-related gene in the adult stage of multiple Tetranychus species and highlight the need to evaluate the roles of essential genes in various organisms.


Subject(s)
Refuse Disposal , Tetranychidae , Animals , Tetranychidae/genetics , Food , Reproduction
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(9): 1061-1067, 2022.
Article in Chinese | MEDLINE | ID: mdl-36111727

ABSTRACT

OBJECTIVES: To establish a system for regulating the gene expression of embryonic mouse cerebral cortex neural stem cells (NSCs) using in utero electroporation (IUE). METHODS: At embryonic day 14.5, the mouse cerebral cortex NSCs were electro-transfected with the pCIG plasmid injected into the ventricle of the mouse embryo. At embryonic day 16.5 or day 17.5, embryonic mouse brain tissues were collected to prepare frozen sections. Immunofluorescence staining was used to observe the proliferation, apoptosis, division, directional differentiation, migration, and maturation of NSCs. RESULTS: The differentiation of NSCs into intermediate progenitors, the proliferation and apoptosis of NSCs, and the morphological development of radial axis of radial glial cells were observed at embryonic day 16.5. The differentiation of NSCs into neurons in layers V-VI of the cerebral cortex, the migration of NSCs to the lateral cerebral cortex, the development of dendrites of migrating neurons, and the maturation of neurons were observed at embryonic day 17.5. CONCLUSIONS: The system for regulating the gene expression of embryonic mouse cerebral cortex NSCs can be established using IUE, which is useful for the study of neural development related to the proliferation, apoptosis, division, directional differentiation, migration and maturation of NSCs in the cerebral cortex.


Subject(s)
Neural Stem Cells , Animals , Cerebral Cortex/metabolism , Electroporation , Gene Expression , Mice , Neurons/metabolism
13.
Elife ; 112022 04 26.
Article in English | MEDLINE | ID: mdl-35471187

ABSTRACT

Mosquitoes transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate explorations of mosquito biology, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, hindgut), and a gut time course of blood meal digestion. Using Aegypti-Atlas, we provide insights into regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior midgut possess digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential induction and repression/depletion of multiple cohorts of peptidases. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by holotricin and gambicin, which are expressed in carcass and digestive tissues, respectively, in a mutually exclusive manner. In the midgut, gambicin and other effectors are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits hallmarks of immune tolerance. Finally, in a cross-species comparison between Ae. aegypti and Anopheles gambiae midguts, we observe that regional digestive and immune specializations are conserved, indicating that our dataset may be broadly relevant to multiple mosquito species. We demonstrate that the expression of orthologous genes is highly correlated, with the exception of a 'species signature' comprising a few highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.


Subject(s)
Aedes , Anopheles , Aedes/genetics , Animals , Anopheles/genetics , Female , Ovary , Sugars , Transcriptome
14.
Cell Rep ; 38(13): 110572, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354023

ABSTRACT

Gut microbes play important roles in host physiology; however, the mechanisms underlying their impact remain poorly characterized. Here, we demonstrate that microbes not only influence gut physiology but also alter its epithelial composition. The microbiota and pathogens both influence intestinal stem cell (ISC) differentiation. Intriguingly, while the microbiota promotes ISC differentiation into enterocytes (EC), pathogens stimulate enteroendocrine cell (EE) fate and long-term accumulation of EEs in the midgut epithelium. Importantly, the evolutionarily conserved Drosophila NFKB (Relish) pushes stem cell lineage specification toward ECs by directly regulating differentiation factors. Conversely, the JAK-STAT pathway promotes EE fate in response to infectious damage. We propose a model in which the balance of microbial pattern recognition pathways, such as Imd-Relish, and damage response pathways, such as JAK-STAT, influence ISC differentiation, epithelial composition, and gut physiology.


Subject(s)
Drosophila Proteins , Cell Differentiation/physiology , Drosophila Proteins/metabolism , Enterocytes/metabolism , Intestines , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
15.
mSystems ; 7(2): e0151621, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35353007

ABSTRACT

Endosymbionts can strongly affect bacterial microbiota in pests. The white-backed planthopper Sogatella furcifera, a notorious pest in rice, is usually co-infected with Cardinium and Wolbachia, but the effects of these endosymbionts together or individually on the host microbiome and fecundity are unclear. Here, we established three S. furcifera lines (Cardinium and Wolbachia double-infected, Cardinium single-infected, and both-uninfected lines) backcrossed to a common nuclear background and found that single and double infections reduced bacterial diversity and changed bacterial community structure across nymph and adult stages and across adult tissues. The endosymbionts differed in densities between adults and nymphs as well as across adult tissues, with the distribution of Cardinium affected by Wolbachia. Both the single infection and particularly the double infection reduced host fecundity. Lines also differed in levels of metabolites, some of which may influence fecundity (e.g., arginine biosynthesis and nicotinamide metabolism). Cardinium in the single-infected line upregulated metabolic levels, while Wolbachia in the double-infected line appeared to mainly downregulate them. Association analysis pointed to possible connections between various bacteria and differential metabolites. These results reveal that Cardinium by itself and in combination with Wolbachia affect bacterial microbiota and levels of metabolites, with likely effects on host fecundity. Many of the effects of these metabolically limited endosymbionts that are dependent on the hosts may be exerted through manipulation of the microbiome. IMPORTANCE Endosymbionts can profoundly affect the nutrition, immunity, development, and reproduction of insect hosts, but the effects of multiple endosymbiont infections on microbiota and the interaction of these effects with insect host fitness are not well known. By establishing S. furcifera lines with different endosymbiont infection status, we found that Cardinium and the combined Cardinium + Wolbachia infections differentially reduced bacterial diversity as well as changing bacterial community structure and affecting metabolism, which may connect to negative fitness effects of the endosymbionts on their host. These results established the connections between reduced bacterial diversity, decreased fecundity and metabolic responses in S. furcifera.


Subject(s)
Hemiptera , Microbiota , Wolbachia , Animals , Fertility , Reproduction , Bacteroidetes , Nymph
16.
Microb Genom ; 8(12)2022 12.
Article in English | MEDLINE | ID: mdl-36748509

ABSTRACT

Pantoea ananatis is a bacterium that is found in many agronomic crops and agricultural pests. Here, we isolated a P. ananatis strain (Lstr) from the rice planthopper Laodelphax striatellus, a notorious pest that feeds on rice plant sap and transmits rice viruses, in order to examine its genome and biology. P. ananatis Lstr is an insect symbiont that is pathogenic to the host insect and appears to mostly inhabit the gut. Its pathogenicity thus raises the possibility of using the Lstr strain as a biological agent. To this end, we analysed the genome of the Lstr strain and compared it with the genomes of other Pantoea species. Our analysis of these genomes shows that P. ananatis can be divided into two mono-phylogenetic clades (clades one and two). The Lstr strain belongs to clade two and is grouped with P. ananatis strains that were isolated from rice or rice-associated samples. A comparative genomic analysis shows that clade two differs from clade one in many genomic characteristics including genome structures, mobile elements, and categories of coding proteins. The genomes of clade two P. ananatis are significantly smaller, have much fewer coding sequences but more pseudogenes than those of clade one, suggesting that clade two species are at the early stage of genome reduction. On the other hand, P. ananatis has a type VI secretion system that is highly variable but cannot be separated by clades. These results clarify our understanding of P. ananatis' phylogenetic diversity and provide clues to the interactions between P. ananatis, host insect, and plant that may lead to advances in rice protection and pest control.


Subject(s)
Hemiptera , Pantoea , Animals , Pantoea/genetics , Genome, Bacterial , Hemiptera/genetics , Genomics
17.
Acta Pharmaceutica Sinica ; (12): 1868-1873, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-929434

ABSTRACT

Saponins and sterones are two main characteristic components in Achyranthis Bidentatae Radix. In order to control the quality of Achyranthis Bidentatae Radix more effectively, a high-performance liquid chromatography (HPLC) method was established by using double external standards calibration method (DESCM) for simultaneous determination of the contents of achyranthoside C, achyranthoside D, β-ecdysterone, 25R-inokosterone and 25S-inokosterone in Achyranthis Bidentatae Radix. Chromatographic separation was achieved on an Agilent Poroshell 120 EC-C18 (150 mm × 4.6 mm, 2.7 µm) using 0.1% phosphoric acid in water and 0.1% phosphoric acid in acetonitrile as mobile phase. The flow rate was 0.8 mL·min-1 and the column temperature was set as 35 ℃, the injection volume was 5 μL and the total analytical time was 30 min. β-Ecdysterone was used as the reference to calculate the relative correction factors (RCF) and relative retention time (RRT) of 25R-inokosterone and 25S-inokosterone, achyranthoside D was used for achyranthoside C. The RCFs of 25R-inokosterone, 25S-inokosterone, and achyranthoside C were 1.116, 1.056, and 0.888 1, respectively. The double external standards calibration method (DESCM) and external standard method (ESM) were used to calculate the contents of five ingredients in Achyranthis Bidentatae Radix samples from different sources and the variation between the results was within acceptable limits (RE ≤ 5%). The results showed that the contents of two saponins and three sterones of Achyranthis Bidentatae Radix were 0.597%-1.916% and 0.044%-0.150% respectively. The total content of saponins was about 10 times that of sterones. In conclusion, the established DESCM allowed simultaneous determination of five ingredients (achyranthoside C, achyranthoside D, β-ecdysterone, 25R-inokosterone, and 25S-inokosterone) in Achyranthis Bidentatae Radix, providing a scientific and feasible overall quality evaluation method for Achyranthis Bidentatae Radix.

18.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1262-1266, 2021 Dec 15.
Article in English, Chinese | MEDLINE | ID: mdl-34911610

ABSTRACT

OBJECTIVES: To study the physical and neuropsychological development of children with Citrin deficiency (CD). METHODS: A total of 93 children, aged 1.9-59.8 months, who were diagnosed with CD by SLC25A13 gene analysis in the First Affiliated Hospital of Jinan University from August 2010 to August 2015, were enrolled as subjects. A retrospective analysis was performed for their birth condition and physical growth and neuropsychological development indices. Among these children, 7 underwent physical measurement and neuropsychological development assessment within 1 year old and after 1 year old, and therefore, a total of 100 cases were included for analysis. RESULTS: For the 93 children with CD, the incidence rate of failure to thrive was 25% (23 children) and the proportion of small for gestational age was 47% (44 children). For the 100 cases of CD, the incidence rates of growth retardation, underweight, emaciation, overweight, and microcephalus were 23% (23 cases), 14% (14 cases), 4% (4 cases), 8% (8 cases), and 9% (9 cases), respectively. The incidence rate of neuropsychological developmental delay was 25% (25 cases), and the incidence rates of development delay in the five domains of adaptability, gross motor, fine motor, language, and social ability were 7% (7 cases), 15% (15 cases), 7% (7 cases), 9% (9 cases), and 7% (7 cases), respectively. CONCLUSIONS: Physical and neuropsychological developmental delay can be observed in children with CD, and physical and neuropsychological development should be regularly assessed.


Subject(s)
Child Development , Citrullinemia , Citrullinemia/physiopathology , Humans , Infant , Mitochondrial Membrane Transport Proteins , Neuropsychological Tests , Retrospective Studies
19.
Exp Appl Acarol ; 83(2): 197-210, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33484388

ABSTRACT

The structures of arthropod bacterial communities are complex. These microbiotas usually provide many beneficial services to their hosts, whereas occasionally they may be parasitical. To date, little is known about the bacterial communities of Tetranychus truncatus and the factors contributing to the structure of its bacterial communities are unexplored yet. Here, we used four symbiont-infected T. truncatus strains-including one Wolbachia and Spiroplasma co-infected strain, two symbiont singly-infected strains and one symbiont uninfected strain-to investigate the influence of endosymbionts on the structure of the host mites' microbiota. Based on 16S rRNA genes sequencing analysis, we found Wolbachia and Spiroplasma were the two most abundant bacteria in T. truncatus and the presence of both symbionts could not change the diversity of bacterial communities (based on alpha-diversity indexes such as ACE, Chao1, Shannon and Simpson diversity index). Symbiont infection did alter the abundance of many other bacterial genera, such as Megamonas and Bacteroides. The structures of bacterial communities differed significantly among symbiont-infected strains. These results suggested a prominent effect of Wolbachia and Spiroplasma on bacterial communities of the host T. truncatus. These findings advance our understanding of T. truncatus microbiota and will be helpful for further study on bacterial communities of spider mites.


Subject(s)
Spiroplasma , Tetranychidae , Wolbachia , Animals , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Spiroplasma/genetics , Symbiosis , Tetranychidae/genetics , Wolbachia/genetics
20.
Pest Manag Sci ; 77(4): 1594-1606, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33342014

ABSTRACT

BACKGROUND: Drosophila suzukii (Matsumura, 1931) (spotted wing drosophila), an invasive species, has recently become a significant global pest of soft-skinned fruits such as berries. Unlike other Drosophila species, female D. suzukii have evolved a specialized sharp, serrated ovipositor that pierces and penetrates ripe and ripening fruits, causing them to lose commercial value and preventing their sale. A first step for the development of biological control agents for pest management may be achieved through the identification of microbes infectious for D. suzukii in the wild. RESULTS: We first determined that D. suzukii is susceptible to chemicals commonly used to rear Drosophilids in the laboratory and established a diet able to sustain healthy D. suzukii growth. Using this diet, we demonstrated that of 25 species of culturable bacteria and fungi isolated from field-collected D. suzukii, eight microbes decreased host survival when injected. Three of the eight bacteria (Alcaligenes faecalis, Achromobacter spanius and Serratia marcescens) were acutely pathogenic to both D. suzukii and Drosophila melanogaster adults by injection. Feeding of these bacteria resulted in susceptibility only in larvae. CONCLUSION: We successfully identified multiple microbes from field-collected D. suzukii that are pathogenic to both larvae and adults through different routes of infection, some of which could be candidates for biocontrol of this species. © 2020 Society of Chemical Industry.


Subject(s)
Achromobacter , Drosophila , Animals , Drosophila melanogaster , Female , Fruit
SELECTION OF CITATIONS
SEARCH DETAIL
...