Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 93(4): 1703-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26020192

ABSTRACT

The effectiveness of carbohydrase enzymes has been inconsistent in corn-based swine diets; however, the increased substrate of nonstarch polysaccharides in drought-affected corn may provide an economic model for enzyme inclusion, but this has not been evaluated. A total of 360 barrows (PIC 1050 × 337, initially 5.85 kg BW) were used to determine the effects of drought-affected corn inclusion with or without supplementation of commercial carbohydrases on growth performance and nutrient digestibility of nursery pigs. Initially, 34 corn samples were collected to find representatives of normal and drought-affected corn. The lot selected to represent the normal corn had a test weight of 719.4 kg/m3, 15.0% moisture, and 4.2% xylan. The lot selected to represent drought-affected corn had a test weight of 698.8 kg/m3, 14.3% moisture, and 4.7% xylan. After a 10-d acclimation period postweaning, nursery pigs were randomly allotted to 1 of 8 dietary treatments in a completely randomized design. Treatments were arranged in a 2 × 4 factorial with main effects of corn (normal vs. drought affected) and enzyme inclusion (none vs. 100 mg/kg Enzyme A vs. 250 mg/kg Enzyme B vs. 100 mg/kg Enzyme A + 250 mg/kg Enzyme B). Both enzymes were included blends of ß-glucanase, cellulose, and xylanase (Enzyme A) or hemicellulase and pectinases (Enzyme B). Pigs were fed treatment diets from d 10 to 35 postweaning in 2 phases. Feed and fecal samples were collected on d 30 postweaning to determine apparent total tract digestibility of nutrients. The nutrient concentrations of normal and drought-affected corn were similar, which resulted in few treatment or main effects differences of corn type or enzyme inclusion. No interactions were observed (P > 0.10) between corn source and enzyme inclusion. Overall (d 10 to 35), treatments had no effect on ADG or ADFI, but enzyme A inclusion tended to improve (P < 0.10; 0.74 vs. 0.69) G:F, which was primarily driven by the improved feed efficiency (0.76 vs. 0.72; P < 0.05) of pigs fed Enzyme A in Phase 2 (d 10 to 25 postweaning) and was likely a result of improved xylan utilization. In conclusion, drought stress did not alter the nonstarch polysaccharide concentration of corn beyond xylan concentration, so it was not surprising that enzyme inclusion showed little benefit to nursery pig growth performance. However, improved feed efficiency of pigs fed diets containing Enzyme A from d 10 to 25 postweaning warrants further investigation


Subject(s)
Animal Feed , Dietary Supplements , Droughts , Glycoside Hydrolases/pharmacology , Polysaccharides/pharmacology , Swine/growth & development , Weight Gain/drug effects , Zea mays , Animal Nutritional Physiological Phenomena/drug effects , Animal Nutritional Physiological Phenomena/physiology , Animals , Cellulose/pharmacology , Diet/veterinary , Digestion/drug effects , Digestion/physiology , Housing, Animal , Male , Polygalacturonase/pharmacology , Random Allocation , Swine/physiology , Treatment Outcome , Weight Gain/physiology
2.
Magn Reson Med ; 38(4): 662-8, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9324334

ABSTRACT

The effects of white and gray matter diffusion anisotropy on ischemic lesion delineation have been studied in the rat model of middle cerebral artery occlusion. Apparent diffusion coefficient (ADC) maps obtained by conventional pulsed gradient spin echo diffusion-weighted imaging (PGSE-DWI) were compared with maps of the trace of the diffusion tensor in both normal and occluded animals. Diffusion tensor trace maps were derived from the average of the ADC maps from three separate experiments with diffusion weighting along three orthogonal axes, and also from a single-scan method. A marked degree of diffusion anisotropy was observed in both cortical gray matter and white matter from ADC maps of the control animals. In the occluded animals, the systematic effects of anisotropy on ADC and lesion area influenced the delineation of the ischemic territory in the PGSE-DWI ADC maps. However, the two trace methods eliminated these effects and gave consistent ischemic lesion depiction, despite the use of differing diffusion times in the two measurements.


Subject(s)
Brain Ischemia/diagnosis , Brain/pathology , Magnetic Resonance Imaging/methods , Animals , Anisotropy , Disease Models, Animal , Image Processing, Computer-Assisted , Male , Rats , Rats, Wistar , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...