Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 218(1): 380-392, 2018 04.
Article in English | MEDLINE | ID: mdl-29369384

ABSTRACT

Intraspecific variation in flower color is often attributed to pollinator-mediated selection, yet this mechanism cannot explain flower color polymorphisms in self-pollinating species. Indirect selection mediated via biotic and abiotic stresses could maintain flower color variation in these systems. The selfing forb, Boechera stricta, typically displays white flowers, but some individuals produce purple flowers. We quantified environmental correlates of flower color in natural populations. To disentangle plasticity from genotypic variation, we performed a multiyear field experiment in five gardens. In controlled conditions, we evaluated herbivore preferences and the effects of drought stress and soil pH on flower color expression. In natural populations, purple-flowered individuals experienced lower foliar herbivory than did their white-flowered counterparts. This pattern also held in the common gardens. Additionally, low-elevation environments induced pigmented flowers (plasticity), and the likelihood of floral pigmentation decreased with source elevation of maternal families (genetic cline). Viability selection favored families with pigmented flowers. In the laboratory, herbivores exerted greater damage on tissue derived from white- vs purple-flowered individuals. Furthermore, drought induced pigmentation in white-flowered lineages, and white-flowered plants had a fecundity advantage in the well-watered control. Flower color variation in selfing species is probably maintained by herbivory, drought stress, and other abiotic factors that vary spatially.


Subject(s)
Brassicaceae/physiology , Ecological and Environmental Phenomena , Flowers/physiology , Pigmentation/physiology , Pollination/physiology , Brassicaceae/genetics , Droughts , Herbivory , Hydrogen-Ion Concentration , Soil , Stress, Physiological
2.
New Phytol ; 194(1): 28-45, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22292897

ABSTRACT

Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na⁺/K⁺-ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.


Subject(s)
Biological Evolution , Cardenolides/toxicity , Ecological and Environmental Phenomena , Herbivory/drug effects , Herbivory/physiology , Plants/drug effects , Animals , Cardenolides/chemistry , Cardenolides/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...