Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
BMC Biol ; 20(1): 182, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986286

ABSTRACT

BACKGROUND: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation. RESULTS: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. CONCLUSIONS: This study identifies SP140 as a druggable epigenetic therapeutic target for CD.


Subject(s)
Crohn Disease , Tumor Necrosis Factor Inhibitors , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Cytokines/genetics , Cytokines/metabolism , Epigenesis, Genetic , Humans , Macrophages , Transcription Factors/genetics
2.
Antibodies (Basel) ; 10(4)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34698051

ABSTRACT

The terminal pathway of complement is implicated in the pathology of multiple diseases and its inhibition is, therefore, an attractive therapeutic proposition. The practicalities of inhibiting this pathway, however, are challenging, as highlighted by the very few molecules in the clinic. The proteins are highly abundant, and assembly is mediated by high-affinity protein-protein interactions. One strategy is to target neoepitopes that are present transiently and only exist on active or intermediate complexes but not on the abundant native proteins. Here, we describe an antibody discovery campaign that generated neoepitope-specific mAbs against the C5b6 complex, a stable intermediate complex in terminal complement complex assembly. We used a highly diverse yeast-based antibody library of fully human IgGs to screen against soluble C5b6 antigen and successfully identified C5b6 neoepitope-specific antibodies. These antibodies were diverse, showed good binding to C5b6, and inhibited membrane attack complex (MAC) formation in a solution-based assay. However, when tested in a more physiologically relevant membrane-based assay these antibodies failed to inhibit MAC formation. Our data highlight the feasibility of identifying neoepitope binding mAbs, but also the technical challenges associated with the identification of functionally relevant, neoepitope-specific inhibitors of the terminal pathway.

3.
SLAS Discov ; 26(5): 663-675, 2021 06.
Article in English | MEDLINE | ID: mdl-33783261

ABSTRACT

The predominant assay detection methodologies used for enzyme inhibitor identification during early-stage drug discovery are fluorescence-based. Each fluorophore has a characteristic fluorescence decay, known as the fluorescence lifetime, that occurs throughout a nanosecond-to-millisecond timescale. The measurement of fluorescence lifetime as a reporter for biological activity is less common than fluorescence intensity, even though the latter has numerous issues that can lead to false-positive readouts. The confirmation of hit compounds as true inhibitors requires additional assays, cost, and time to progress from hit identification to lead drug-candidate optimization. To explore whether the use of fluorescence lifetime technology (FLT) can offer comparable benefits to label-free-based approaches such as RapidFire mass spectroscopy (RF-MS) and a superior readout compared to time-resolved fluorescence resonance energy transfer (TR-FRET), three equivalent assays were developed against the clinically validated tyrosine kinase 2 (TYK2) and screened against annotated compound sets. FLT provided a marked decrease in the number of false-positive hits when compared to TR-FRET. Further cellular screening confirmed that a number of potential inhibitors directly interacted with TYK2 and inhibited the downstream phosphorylation of the signal transducer and activator of transcription 4 protein (STAT4).


Subject(s)
Drug Discovery/methods , Drug Discovery/standards , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Fluorescent Dyes , TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/chemistry , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Mass Spectrometry , Reproducibility of Results , Sensitivity and Specificity
5.
Bioorg Med Chem Lett ; 29(20): 126675, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31521475

ABSTRACT

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases, particularly Kallikrein 5 (KLK5) has been well established and it is expected that a KLK5 inhibitor would improve the dermal barrier and also reduce the pain and itch that afflict Netherton syndrome patients. One of the challenges of covalent protease inhibitors has been achieving selectivity over closely related targets. In this paper we describe the use of structural insight to design and develop a selective and highly potent reversibly covalent KLK5 inhibitor from an initial weakly binding fragment.


Subject(s)
Benzamidines/chemistry , Kallikreins/antagonists & inhibitors , Netherton Syndrome/drug therapy , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence , Benzamidines/pharmacology , Binding Sites , Drug Evaluation, Preclinical , Humans , Isomerism , Models, Molecular , Molecular Structure , Mutation , Protein Binding , Serine Peptidase Inhibitor Kazal-Type 5/genetics , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
6.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30962368

ABSTRACT

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Subject(s)
Antiprotozoal Agents/administration & dosage , Leishmania donovani/drug effects , Leishmania infantum/drug effects , Leishmaniasis, Visceral/diagnostic imaging , Proteasome Inhibitors/administration & dosage , Protozoan Proteins/antagonists & inhibitors , Animals , Antiprotozoal Agents/chemistry , Binding Sites , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Leishmania donovani/chemistry , Leishmania donovani/enzymology , Leishmania infantum/chemistry , Leishmania infantum/enzymology , Leishmaniasis, Visceral/parasitology , Male , Mice , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Protein Conformation , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
7.
Bioorg Med Chem Lett ; 29(12): 1454-1458, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31005442

ABSTRACT

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases particularly KLK5 has been well established. To treat sufferers of this severe condition we wished to develop a topical KLK5 inhibitor in order to normalise epidermal shedding and reduce the associated inflammation and itching. In this paper we describe structure-based optimisation of a series of brightly coloured weak KLK5 inhibitors into colourless, non-irritant molecules with good KLK5 activity and selectivity over a range of serine proteases.


Subject(s)
Drug Design , Kallikreins/antagonists & inhibitors , Netherton Syndrome/drug therapy , Humans
8.
J Med Chem ; 59(6): 2452-67, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26938474

ABSTRACT

Inhibitors of mitochondrial branched chain aminotransferase (BCATm), identified using fragment screening, are described. This was carried out using a combination of STD-NMR, thermal melt (Tm), and biochemical assays to identify compounds that bound to BCATm, which were subsequently progressed to X-ray crystallography, where a number of exemplars showed significant diversity in their binding modes. The hits identified were supplemented by searching and screening of additional analogues, which enabled the gathering of further X-ray data where the original hits had not produced liganded structures. The fragment hits were optimized using structure-based design, with some transfer of information between series, which enabled the identification of ligand efficient lead molecules with micromolar levels of inhibition, cellular activity, and good solubility.


Subject(s)
Mitochondria/enzymology , Transaminases/antagonists & inhibitors , Adipocytes/drug effects , Adipocytes/enzymology , Crystallography, X-Ray , High-Throughput Screening Assays , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Protein Binding , Structure-Activity Relationship
9.
J Med Chem ; 58(18): 7140-63, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26090771

ABSTRACT

The hybridization of hits, identified by complementary fragment and high throughput screens, enabled the discovery of the first series of potent inhibitors of mitochondrial branched-chain aminotransferase (BCATm) based on a 2-benzylamino-pyrazolo[1,5-a]pyrimidinone-3-carbonitrile template. Structure-guided growth enabled rapid optimization of potency with maintenance of ligand efficiency, while the focus on physicochemical properties delivered compounds with excellent pharmacokinetic exposure that enabled a proof of concept experiment in mice. Oral administration of 2-((4-chloro-2,6-difluorobenzyl)amino)-7-oxo-5-propyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile 61 significantly raised the circulating levels of the branched-chain amino acids leucine, isoleucine, and valine in this acute study.


Subject(s)
Mitochondrial Proteins/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidinones/chemistry , Transaminases/antagonists & inhibitors , Adipocytes/drug effects , Adipocytes/enzymology , Animals , Crystallography, X-Ray , Humans , Isoleucine/blood , Leucine/blood , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Molecular , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Structure-Activity Relationship , Transaminases/chemistry , Valine/blood
10.
Nat Chem Biol ; 11(3): 189-91, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25622091

ABSTRACT

PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.


Subject(s)
Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Hydrolases/antagonists & inhibitors , Neutrophils/drug effects , Animals , Benzimidazoles/chemical synthesis , Binding, Competitive , Calcium/metabolism , Citrulline/metabolism , Enzyme Inhibitors/chemical synthesis , HEK293 Cells , Histones/metabolism , Humans , In Vitro Techniques , Mice , Models, Molecular , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases , Small Molecule Libraries , Substrate Specificity
11.
J Biomol Screen ; 8(6): 648-59, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14711390

ABSTRACT

The rapid increase in size of compound libraries, as well as new targets emerging from the Human Genome Project, require progress in ultra-high-throughput screening (uHTS) systems. In a joint effort with scientists and engineers from the biotech and the pharmaceutical industry, a modular, fully integrated system for miniaturized uHTS was developed. The goal was to achieve high data quality in small assay volumes (1-4 microL) combined with reliable and unattended operation. Two new confocal fluorescence readers have been designed. One of the instruments is a 4-channel confocal fluorescence reader, measuring with 4 objectives in parallel. The fluorescence readout is based on single-molecule detection methods, allowing high sensitivity at low tracer concentrations and delivering an information-rich output. The other instrument is a confocal fluorescence imaging reader, where the images are analyzed in terms of generic patterns and quantified in units of intensity per pixel. Both readers are spanning the application range from assays with isolated targets in homogenous solution or membrane vesicle-based assays (4-channel reader) to cell-based assays (imaging reader). Results from a comprehensive test on these assay types demonstrate the high quality and robustness of this screening system.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Drug Evaluation, Preclinical/methods , Anti-Bacterial Agents/pharmacology , Cell Death , Cell Line , Cell Survival , Computers , Drug Contamination , Fluorescence , Humans , Inhibitory Concentration 50 , Ligands , Microscopy, Confocal , Peptides/analysis , Proteins/analysis , Ribosomes/drug effects , Sensitivity and Specificity , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...