Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Heliyon ; 10(3): e25233, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38327393

ABSTRACT

Chlorpyrifos (CPS), an organophosphorus insecticide, is widely used for agricultural and non-agricultural purposes with hazardous health effects. Berberine (BBR) is a traditional Chinese medicine and a phytochemical with anti-inflammatory and anti-oxidative properties. The present study evaluated the effects of BBR against kidney damage induced by CPS and the underlying mechanisms. An initial study indicated that BBR 50 mg/kg was optimal under our experimental conditions. Then, 24 rats (6/group) were randomized into: control, BBR (50 mg/kg/day), CPS (10 mg/kg/day), and CPS + BBR. BBR was administration 1 h prior to CPS. Each treatment was delivered daily for a period of 28 consecutive days using a gastric gavage tube. Compared to CPS-alone treated rats, BBR effectively improved renal function by preventing the rise in serum urea, creatinine, and uric levels. The reno-protective effects of BBR were confirmed through a histological examination of kidney tissues. BBR restored oxidant-antioxidant balance in renal tissues mediated by Keap1/Nrf2/HO-1 axis modulation. In addition, BBR decreased nitric oxide (NO) and myeloperoxidase (MPO) activity. This was paralleled with the potent down-regulation of NF-κB. Furthermore, BBR exhibited anti-apoptotic activities supported by the upregulation of Bcl-2 and down-regulation of Bax and caspase-3 expression. In conclusion, our data suggest that BBR attenuates CPS-induced nephrotoxicity in rats by restoring oxidant-antioxidant balance and inhibiting inflammatory response and apoptosis in renal tissue. This is mediated, at least partly, by modulation of the Nrf2/HO-1 axis.

4.
Ecotoxicol Environ Saf ; 262: 115122, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37329850

ABSTRACT

Chlorpyrifos (CPF), is an organophosphate pesticide that is widely used for agricultural purposes. However, it has well-documented hepatotoxicity. Lycopene (LCP) is a plant-derived carotenoid with antioxidant and anti-inflammatory activities. The present work was designed to evaluate the potential hepatoprotective actions of LCP against CPF-induced hepatotoxicity in rats. Animals were assigned into five groups namely: Group I (Control), Group II (LCP), Group III (CPF), Group IV (CPF + LCP 5 mg/kg), and Group V (CPF + LCP 10 mg/kg). LCP offered protection as evidenced by inhibiting the rise in serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) induced by CPF. This was confirmed histologically as LCP-treated animals showed liver tissues with less proliferation of bile ducts and periductal fibrosis. LCP significantly prevented the rise in hepatic content of malondialdehyde (MDA), depletion of reduced glutathione (GSH), and exhaustion of glutathione-s-transferase (GST) and superoxide dismutase (SOD). Further, LCP significantly prevented hepatocyte death as it ameliorated the increase in Bax and the decrease in Bcl-2 expression induced by CPF in liver tissues as determined immunohistochemically. The observed protective effects of LCP were further confirmed by a significant enhancement in heme oxygenase-1 (HO-1) and NF-E2-related factor 2 (Nrf2) expression. In conclusion, LCP possesses protective effects against CPF-induced hepatotoxicity. These include antioxidation and activation of the Nrf2/HO-1 axis.

5.
Biomol Biomed ; 23(6): 1069-1078, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37212036

ABSTRACT

Metabolic syndrome (MetS) is a combination of metabolic disorders that can predispose individuals to benign prostatic hyperplasia (BPH). The inhibition of the cannabinoid 1 (CB1) receptor has been used to treat metabolic disorders in animal models. This study reports the use of a peripherally restricted CB1 antagonist (AM6545) and a neutral CB1 antagonist (AM4113) to improve MetS-related BPH in rats. Animals were divided into three control groups to receive either a normal rodent diet, AM6545, or AM4113. MetS was induced in the fourth, fifth, and sixth groups using a concentrated fructose solution and high-salt diet delivered as food pellets for eight weeks. The fifth and sixth groups were further given AM6545 or AM4113 for additional four weeks. Body and prostate weights were measured and prostate sections were stained with hematoxylin eosin. Cyclin D1, markers of oxidative stress and inflammation, and levels of the endocannabinoids were recorded. BPH in rats with MetS was confirmed through increased prostate weight and index, as well as histopathology. Treatment with either AM6545 or AM4113 significantly decreased prostate weight, improved prostate histology, and reduced cyclin D1 expression compared with the MetS group. Groups treated with CB1 antagonists experienced reduced lipid peroxidation, recovered glutathione depletion, restored catalase activity, and had lower inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). MetS rats treated with either AM6545 or AM4113 showed reduced concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the prostate compared with the MetS group. In conclusion, the CB1 antagonists AM6545 and AM4113 protect against MetS-induced BPH through their anti-proliferative, antioxidant, and anti-inflammatory effects.


Subject(s)
Metabolic Syndrome , Prostatic Hyperplasia , Male , Humans , Rats , Animals , Cannabinoid Receptor Antagonists/pharmacology , Cyclin D1 , Receptor, Cannabinoid, CB1 , Piperidines/pharmacology
6.
Front Physiol ; 14: 1154374, 2023.
Article in English | MEDLINE | ID: mdl-37064904

ABSTRACT

As both a sensor of extracellular calcium (Ca2+ o) concentration and a key controller of Ca2+ o homeostasis, one of the most interesting properties of the calcium-sensing receptor (CaR) is its sensitivity to, and modulation by, ions and small ligands other than Ca2+. There is emerging evidence that extracellular phosphate can act as a partial, non-competitive CaR antagonist to modulate parathyroid hormone (PTH) secretion, thus permitting the CaR to integrate mineral homeostasis more broadly. Interestingly, phosphorylation of certain intracellular CaR residues can also inhibit CaR responsiveness. Thus, negatively charged phosphate can decrease CaR activity both extracellularly (via association with arginine) and intracellularly (via covalent phosphorylation).

7.
Molecules ; 28(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36985711

ABSTRACT

Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes against GEN-induced nephrotoxicity in rats. The PTL was prepared as phytosomes to improve the pharmacological properties with a particle size of 407.4 nm, and surface morphology showed oval particles with multiple edges. Rats were divided into six groups: control, nano-formulation plain vehicle, PTL-phytosomes (10 mg/kg), GEN (100 mg/kg), GEN + PTL-phytosomes (5 mg/kg), and GEN + PTL-phytosomes (10 mg/kg). The administration of PTL-phytosomes alleviated GEN-induced impairment in kidney functions and histopathological damage, and decreased kidney injury molecule-1 (KIM-1). The anti-oxidative effect of PTL-phytosomes was demonstrated by the reduced malondialdehyde (MDA) concentration and increased superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, PTL-phytosomes treatment significantly enhanced sirtuin 1 (Sirt-1), nuclear factor erythroid-2-related factor-2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1). Additionally, PTL-phytosomes treatment exhibited anti-inflammatory and anti-apoptotic properties in the kidney tissue. These findings suggest that PTL-phytosomes attenuate renal dysfunction and structural damage by reducing oxidative stress, inflammation, and apoptosis in the kidney.


Subject(s)
Gentamicins , Sesquiterpenes , Rats , Animals , Gentamicins/adverse effects , NF-E2-Related Factor 2/metabolism , Phytosomes , Sirtuin 1/metabolism , Kidney , Antioxidants/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Oxidative Stress , NAD(P)H Dehydrogenase (Quinone)/metabolism
8.
Saudi Pharm J ; 31(2): 255-264, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36942271

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is one of chemotherapies' most often documented side effects. Patients with CIPN experience spontaneous burning, numbness, tingling, and neuropathic pain in their feet and hands. Currently, there is no effective pharmacological treatment to prevent or treat CIPN. Activating the cannabinoid receptor type 1 (CB1) by orthosteric agonists has shown promising results in alleviating the pain and neuroinflammation associated with CIPN. However, the use of CB1 orthosteric agonists is linked to undesirable side effects. Unlike the CB1 orthosteric agonists, CB1 positive allosteric modulators (PAMs) don't produce any psychoactive effects, tolerance, or dependence. Previous studies have shown that CB1 PAMs exhibit antinociceptive effects in inflammatory and neuropathic rodent models. This study aimed to investigate the potential benefits of the newly synthesized GAT229, a pure CB1 PAM, in alleviating neuropathic pain and slowing the progression of CIPN. GAT229 was evaluated in a cisplatin-induced (CIS) mouse model of peripheral neuropathic pain (3 mg/kg/d, 28 d, i.p.). GAT229 attenuated and slowed the progression of thermal hyperalgesia and mechanical allodynia induced by CIS, as evaluated by the hotplate test and von Frey filament test. GAT229 reduced the expression of proinflammatory cytokines in the dorsal root ganglia (DRG) neurons. Furthermore, GAT229 attenuated nerve injuries by normalizing the brain-derived neurotrophic factor and the nerve growth factor mRNA expression levels in the DRG neurons. The CB1 receptor antagonist/inverse agonist AM251 blocked GAT229-mediated beneficial effects. According to our data, we suggest that CB1 PAMs might be beneficial in alleviating neuropathic pain and slowing the progression of CIPN.

9.
Plants (Basel) ; 11(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36235468

ABSTRACT

INTRODUCTION: Benign prostatic hyperplasia (BPH) is a common disease among elderly men. Its pharmacological treatment is still unsatisfactory. 6-Paradol (6-PD) is an active metabolite found in many members of the Zingiberaceae family. It was reported to possess anti-proliferative, antioxidant, and anti-inflammatory activities. The present study aimed at exploring the potential of 6-PD to inhibit testosterone-induced BPH in rats as well as the probable underlying mechanism. METHODS: Male Wistar rats were divided into 6 groups and treated as follows: Group 1 (control group) received vehicles only, Group 2 testosterone only, Groups 3 and 4 received 6-PD (2.5 and 5.0 mg/kg; respectively) and testosterone, and Group 6 received finasteride and testosterone. RESULTS: Daily treatment of animals with 6-PD at the two dose levels of 2.5 and 5 mg/kg significantly ameliorated a testosterone-induced rise in prostate index and weight. This was confirmed by histological examinations of prostatic tissues that indicated a reduction in the pathological changes as well as inhibition of the rise in glandular epithelial height in 6-PD treated rats. Immunohistochemical investigations showed that 6-PD prevented the up-regulation of cyclin D1 induced by testosterone injections. Further, 6-PD significantly modulated mRNA expression of both Bcl2 and Bax in prostate tissues of testosterone-treated rats in favor of anti-proliferation. It also showed antioxidant activities as evidenced by inhibition of accumulation of malondialdehyde (MDA) and exhaustion of catalase (CAT) activity. In addition, 6-PD displayed significant anti-inflammatory activities as it prevented up-regulation of interleukin-6 (IL-6) and nuclear factor kappa B (NF-κB). Immunoblotting analysis revealed that 6-PD significantly inhibited testosterone-induced activation of AKT and mTOR in prostate tissues. CONCLUSIONS: 6-PD protects against testosterone-induced BPH in rats. This can be attributed, at least partly, to its antiproliferative, antioxidant, and anti-inflammatory properties as well as its ability to inhibit activation of the AKT/mTOR axis.

10.
Int J Gen Med ; 15: 6821-6836, 2022.
Article in English | MEDLINE | ID: mdl-36051568

ABSTRACT

Background: Like other vaccines, Pfizer BioNTech's COVID-19 vaccine efficacy against SARS-CoV-2 virus infections begins to decline within a few months after the 2nd dose. On August 12, 2021, the FDA allowed additional Pfizer BioNTch's COVID-19 vaccine dose (3rd or booster dose) for individuals with weakened immunity. This study aimed to evaluate the short-term adverse reactions (ADRs) of the 2nd and the 3rd doses of the Pfizer BioNTech COVID-19 vaccine. Methods: Information for this study was collected by Google Form questionnaire (online survey). The results included responses from 442 people, the majority from Saudi Arabia. Results: The most common local ADRs following the 3rd dose were injection site pain, injection site hypersensitivity, and axillary lymph node swelling. The most common systemic ADRs were fatigue, muscle pain, bone pain, headache, and fever less than 38ºC. Less common systemic ADRs were shivering, fever more than 38ºC, nasal congestion and rhinorrhea, arrhythmia, cough, abdominal pain, chest tightness, nausea, diarrhea, vomiting, and tachypnea. Rare systemic ADRs were constipation, dizziness and vertigo, lack of concentration, sore throat, excessive hair loss, dysmenorrhea and heavy menstruation, and Bell's palsy. Severe allergic reactions were reported by 2.6% of participants after the 2nd dose, compared with none after the 3rd dose. Nasal congestion and runny nose are more frequent after the 3rd dose. The ADRs of the 2nd and 3rd doses were significantly more prevalent in females. 12% of participants reported ADRs lasting more than one week after the 3rd dose compared to 5% after the 2nd dose. People ≤ 60 years were more affected by the vaccine ADRs. Conclusion: Most of the ADRs reported after the 3rd vaccine dose were consistent with the Pfizer vaccine information sheet and similar to the 2nd dose ADRs.

11.
Life (Basel) ; 12(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36143405

ABSTRACT

(1) Background: 2-Methoxyestradiol (2ME) is a metabolite of estrogens and possesses promising anti-proliferative and cytotoxic activities. However, it suffers unfavorable pharmacokinetic characteristics such as absorption after oral administration. The aim of this study was to prepare an optimized 2ME self-nanoemulsifying drug delivery system (2ME-SNEDDS) and evaluate its cytotoxicity and pro-apoptotic activities in MCF-7 breast cancer cells. (2) Methods: For optimization of the 2ME-SNEDDS, a three-component system was used in the D-optimal mixture experimental study. MCF-7 cells were incubated with the 2ME-SNEDDS and subjected to an assessment of growth inhibition, cell cycle progression, annexin V staining, caspase-3 concentration, Bax, Bcl-2, and cyclin D1 mRNA expression, and reactive oxygen species (ROS) generation. (3) Results: The optimized formula had a globule size of 94.97 ± 4.35 nm. Zeta potential was found to be -3.4 ± 1.2 mV with a polydispersity index (PDI) of 0.34. In addition, 96.3 ± 4.3% of 2ME was released from the 2ME-SNEDDS within 24 h using the activated analysis bag technique. Moreover, the prepared 2ME-SNEDDS exhibited a significant enhancement of the anti-proliferative activity against MCF-7 cells in comparison to raw 2ME. This was associated with cyclin D1 expression down-regulation and the accumulation of cells in the G0/G1 and G2/M phases. The pro-apoptotic activities of the 2ME-SNEDDS were confirmed by annexin V staining, which indicated enhanced early and late cell death. This accompanied modulation of the mRNA expression of Bax and Bcl-2 in favor of apoptosis. The 2ME-SNEDDS significantly enhanced cleaved caspase-3 concentration in comparison to raw 2ME. In addition, the 2ME-SNEDDS significantly increased the generation of ROS in MCF-7 cells. (4) Conclusions: The 2ME-SNEDDS exhibits enhanced cytotoxicity and pro-apoptotic activity in MCF-7 cells. This is mediated by, at least partially, ROS generation.

12.
Pharm. pract. (Granada, Internet) ; 20(3): 1-16, Jul.-Sep. 2022. tab, graf
Article in English | IBECS | ID: ibc-210439

ABSTRACT

Objective: The purpose of this research is to assess the commitment of participants in Saudi Arabia and Egypt towards healthy daily habits, preventive measures, healthy food habits, and beliefs about natural products as an immunostimulants during COVID-19 pandemic. Method: A cross-sectional questionnaire-based study was conducted in Saudi Arabia (mainly Riyadh and Jeddah) and Egypt (mainly Cairo). The questionnaire instrument was created based on an extensive literature review on the COVID-19 pandemic, including its spreading and transmission methods, preventive measures, healthy lifestyle, and diets that increase human immunity against viral infections and the use of natural products and drinks. The questionnaire was created by Microsoft 365® office forms, participants were invited through emails and other social media. The questionnaire includes a demographic section (gender, nationality, residency country, city, age, marital status, educational level, employment status, chronic disease history, under anxiety or stress, have a temper or irritable person, were infected/currently infected and in contact to COVID-19 patient) and (23) questions arranged under five domains; Domain I daily habits (4), Domain II keeping preventive measures (4), Domain III healthy eating habits (9), Domain IV for participants currently or previously infected, or in contact with a patient (4) Domain V for assessment of participants’ beliefs towards the use of natural products to elevate immunity during COVID-19 pandemic (2), beside 4 choice questions (stimulant drinks, natural drinks, natural products, and zinc-rich food). SPSS® was used to analyze the results using Student’ t-test, ANOVA, and Tukey’s HSD tests. (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Healthy Lifestyle , Pandemics , Severe acute respiratory syndrome-related coronavirus , Coronavirus Infections/epidemiology , Biological Products , Saudi Arabia , Egypt , Cross-Sectional Studies , Surveys and Questionnaires
13.
Nutrients ; 14(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35565857

ABSTRACT

Endometrial hyperplasia (EH) is the most common risk factor for endometrial malignancy in females. The pathogenesis of EH has been directly linked to uterine inflammation, which can result in abnormal cell division and decreased apoptosis. Piceatannol (PIC), a natural polyphenolic stilbene, is known to exert anti-inflammatory, antioxidant and anti-proliferative activities. The aim of the present study was to examine the potential preventive role of PIC in estradiol benzoate (EB)-induced EH in rats. A self-nanoemulsifying drug delivery system (SNEDDS) was prepared to improve the solubility of the PIC. Therefore, thirty female Wistar rats were divided into five groups: (1) control, (2) PIC SNEDDS (10 mg/kg), (3) EB (0.6 mg/kg), (4) EB + PIC SNEDDS (5 mg/kg) and (5) EB + PIC SNEDDS (10 mg/kg). The administration of PIC SNEDDS prevented EB-induced increases in uterine weights and histopathological changes. Additionally, it displayed pro-apoptotic and antioxidant activity in the endometrium. Immunohistochemical staining of uterine sections co-treated with PIC SNEDDS showed significantly decreased expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nuclear transcription factor-kappa B (NF-κB). This anti-inflammatory effect was further confirmed by a significant increase in Nrf2 and heme oxygenase-1 (HO-1) expression. These results indicate that SNEDDS nanoformulation of PIC possesses protective effects against experimentally induced EH.


Subject(s)
Endometrial Hyperplasia , Stilbenes , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/metabolism , Endometrial Hyperplasia/chemically induced , Endometrial Hyperplasia/drug therapy , Endometrial Hyperplasia/prevention & control , Estradiol/pharmacology , Female , Heme Oxygenase-1/metabolism , Humans , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Rats , Rats, Wistar , Stilbenes/therapeutic use
14.
Pharm Pract (Granada) ; 20(3): 2700, 2022.
Article in English | MEDLINE | ID: mdl-36733518

ABSTRACT

Objective: The purpose of this research is to assess the commitment of participants in Saudi Arabia and Egypt towards healthy daily habits, preventive measures, healthy food habits, and beliefs about natural products as an immunostimulants during COVID-19 pandemic. Method: A cross-sectional questionnaire-based study was conducted in Saudi Arabia (mainly Riyadh and Jeddah) and Egypt (mainly Cairo). The questionnaire instrument was created based on an extensive literature review on the COVID-19 pandemic, including its spreading and transmission methods, preventive measures, healthy lifestyle, and diets that increase human immunity against viral infections and the use of natural products and drinks. The questionnaire was created by Microsoft 365® office forms, participants were invited through emails and other social media. The questionnaire includes a demographic section (gender, nationality, residency country, city, age, marital status, educational level, employment status, chronic disease history, under anxiety or stress, have a temper or irritable person, were infected/currently infected and in contact to COVID-19 patient) and (23) questions arranged under five domains; Domain I daily habits (4), Domain II keeping preventive measures (4), Domain III healthy eating habits (9), Domain IV for participants currently or previously infected, or in contact with a patient (4) Domain V for assessment of participants' beliefs towards the use of natural products to elevate immunity during COVID-19 pandemic (2), beside 4 choice questions (stimulant drinks, natural drinks, natural products, and zinc-rich food). SPSS® was used to analyze the results using Student' t-test, ANOVA, and Tukey's HSD tests. Result: 510 individuals with various demographic characteristics participated in the study. This study revealed that the participants belief in healthy foods, natural drinks (mainly ginger, lemon, and cinnamon), natural products (mainly honey, olive oil, and black seed), healthy habits, and preventive measures as sanitizers, social distance, and exercise. Only 13% of all participants were infected with COVID-19, although 31% of them were in contact with COVID -19 patients, about 93% were under stress, and 22% were with chronic diseases. Participants who are married, not in contact with patients and not previously infected by COVID-19 are more adhered to preventive measures while those previously or currently infected are more committed to healthy lifestyle and diet habits. Qualification level seems to make no significant difference in any domain. 78.6% of the participants beliefs in the benefits of utilizing natural products in preventing infection with corona virus or reducing the period of treatment in case of infection. About 95.7% of the infected persons had no need of hospitalization and about 50% are cured within two weeks of infection. The questionnaire revealed that Nescafe and black tea were the most used stimulant drinks among the participants, particularly the students and who were always under stress. Most of the participants agreed with the utilization of Zn-rich food, particularly Egyptians, which may help in boosting their immunity. Conclusion: Natural products selected in the present study can be used in combination with the existing clinical standards of care that have the potential to serve as prophylactic agents in populations that are at risk to develop COVID-19 infection.

15.
Nutrients ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615674

ABSTRACT

Garcinia mangostana L. (Clusiaceae), a popular tropical fruit for its juiciness and sweetness, is an opulent fountain of prenylated and oxygenated xanthones with a vast array of bio-activities. Garcinone E (GE), a xanthone derivative reported from G. mangostana, possesses cytotoxic and aromatase inhibitory activities. The present research endeavors to investigate the hepato-protection efficaciousness of GE on concanavalin-A (Con-A)-instigated hepatitis. Results showed that GE pretreating noticeably diminishes both the serum indices (transaminases, ALP, LDH, and γ-GT) and histopathological lesions of the liver. It counteracted neutrophil and CD4+ infiltration into the liver. GE furthered the Nrf2 genetic expression and its antioxidants' cascade, which resulted in amelioration of Con-A-caused oxidative stress (OS), lipid per-oxidative markers (4-HNE, MDA, PC) reduction, and intensified antioxidants (TAC, SOD, GSH) in the hepatic tissue. Additionally, GE prohibited NF-ĸB (nuclear factor kappa-B) activation and lessened the genetics and levels of downstream cytokines (IL1ß and IL6). Moreover, the TNF-α/JNK axis was repressed in GE-treated mice, which was accompanied by attenuation of Con-A-induced apoptosis. These findings demonstrated the protective potential of GE in Con-A-induced hepatitis which may be associated with Nrf2/HO-1 signaling activation and OS suppression, as well as modulation of the NF-κB and TNF-α/JNK/apoptosis signaling pathway. These results suggest the potential use of GE as a novel hepato-protective agent against autoimmune hepatitis.


Subject(s)
Hepatitis, Autoimmune , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Hepatitis, Autoimmune/prevention & control , Antioxidants/pharmacology , Antioxidants/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Aromatase Inhibitors , Liver/metabolism , Oxidative Stress
16.
Pharmaceutics ; 13(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34834265

ABSTRACT

Excessive architectural re-modeling of tissues in pulmonary fibrosis due to proliferation of myofibroblasts and deposition of extracellular matrix adversely affects the elasticity of the alveoli and lung function. Progressively destructive chronic inflammatory disease, therefore, necessitates safe and effective non-invasive airway delivery that can reach deep alveoli, restore the surfactant function and reduce oxidative stress. We designed an endogenous surfactant-based liposomal delivery system of naringin to be delivered as an aerosol that supports pulmonary mechanics for the management of pulmonary fibrosis. Phosphatidylcholine-based liposomes showed 91.5 ± 2.4% encapsulation of naringin, with a mean size of 171.4 ± 5.8 nm and zeta potential of -15.5 ± 1.3 mV. Liposomes with the unilamellar structure were found to be spherical and homogeneous in shape using electron microscope imaging. The formulation showed surface tension of 32.6 ± 0.96 mN/m and was able to maintain airway patency of 97 ± 2.5% for a 120 s test period ensuring the effective opening of lung capillaries and deep lung delivery. In vitro lung deposition utilizing Twin Stage Impinger showed 79 ± 1.5% deposition in lower airways, and Anderson Cascade Impactor deposition revealed a mass median aerodynamic diameter of 2.35 ± 1.02 µm for the aerosolized formulation. In vivo efficacy of the developed formulation was analyzed in bleomycin-induced lung fibrosis model in rats after administration by the inhalation route. Lactate dehydrogenase activity, total protein content, and inflammatory cell infiltration in broncho-alveolar lavage fluid were substantially reduced by liposomal naringin. Oxidative stress was minimized as observed from levels of antioxidant enzymes. Masson's Trichrome staining of lung tissue revealed significant amelioration of histological changes and lesser deposition of collagen. Overall results indicated the therapeutic potential of the developed non-invasive aerosol formulation for the effective management of pulmonary fibrosis.

17.
Saudi Pharm J ; 29(11): 1355-1360, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34819796

ABSTRACT

OBJECTIVES: Cytochrome P450 2E1 (CYP2E1) is one of the major enzymes involved in the metabolism and detoxification of various drugs and xenobiotics. Polymorphisms in the CYP2E1 gene exhibit high inter-individual variations associated with alterations in CYP2E1 gene expression and enzyme function. This study aimed to determine the genotype distributions and allele frequencies of CYP2E1*1B, *5B, and *6 polymorphisms among Saudis in western Saudi Arabia. METHODS: In total, 140 healthy Saudis attending King Abdulaziz University Hospital between February and April 2021 were included in the study. CYP2E1 gene polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. RESULTS: The genotype frequencies of CYP2E1*1B A2A2, A2A1, and A1A1 were 54.29%, 40%, and 8%, respectively. The frequencies of CYP2E1*5B c1c1 and c1c2 genotypes were approximately 99.93% and 0.07%, respectively. The frequencies of the CYP2E1*6 DD, DC, and CC genotypes were 91.43%, 7.85%, and 0.72%, respectively. The genotype distributions for these polymorphisms were consistent with the expected distribution based on Hardy-Weinberg equilibrium. The allele frequencies were 74.29% A2 and 25.71% A1 for CYP2E1*1B, 99.64% c1 and 0.36% c2 for CYP2E1*5B, and 95.36% D and 4.65% C for CYP2E1*6. CONCLUSION: The genotype distribution of CYP2E1*1B polymorphism was higher in the western Saudi population, whereas the CYP2E1*5B and *6 polymorphisms were lower than the global average. Knowledge of the prevalence of CYP2E1 polymorphisms among our population will provide a better understanding of whether individual patients might benefit from their medication or whether they might develop adverse effects.

18.
Pharmaceutics ; 13(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34575422

ABSTRACT

Acute respiratory distress syndrome (ARDS), a catastrophic illness of multifactorial etiology, involves a rapid upsurge in inflammatory cytokines that leads to hypoxemic respiratory failure. Dexamethasone, a synthetic corticosteroid, mitigates the glucocorticoid-receptor-mediated inflammation and accelerates tissue homeostasis towards disease resolution. To minimize non-target organ side effects arising from frequent and chronic use of dexamethasone, we designed biodegradable, lung-targeted microspheres with sustained release profiles. Dexamethasone-loaded lipopolymeric microspheres of PLGA (Poly Lactic-co-Glycolic Acid) and DPPC (Dipalmitoylphosphatidylcholine) stabilized with vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate) were prepared by a single emulsion technique that had a mean diameter of 8.83 ± 0.32 µm and were spherical in shape as revealed from electron microscopy imaging. Pharmacokinetic and biodistribution patterns studied in the lungs, liver, and spleen of Wistar rats showed high selectivity and targeting efficiency for the lung tissue (re 13.98). As a proof-of-concept, in vivo efficacy of the microspheres was tested in the lipopolysaccharide-induced ARDS model in rats. Inflammation markers such as IL-1ß, IL-6, and TNF-α, quantified in the bronchoalveolar lavage fluid indicated major improvement in rats treated with dexamethasone microspheres by intravenous route. Additionally, the microspheres substantially inhibited the protein infiltration, neutrophil accumulation and lipid peroxidation in the lungs of ARDS bearing rats, suggesting a reduction in oxidative stress. Histopathology showed decreased damage to the pulmonary tissue upon treatment with the dexamethasone-loaded microspheres. The multipronged formulation technology approach can thus serve as a potential treatment modality for reducing lung inflammation in ARDS. An improved therapeutic profile would help to reduce the dose, dosing frequency and, eventually, the toxicity.

19.
J Endocr Soc ; 5(9): bvab057, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34337274

ABSTRACT

25-hydroxyvitamin D 1α-hydroxylase (encoded by CYP27B1), which catalyzes the synthesis of 1,25-dihydroxyvitamin D3, is subject to negative or positive modulation by extracellular Ca2+ (Ca2+ o) depending on the tissue. However, the Ca2+ sensors and underlying mechanisms are unidentified. We tested whether calcium-sensing receptors (CaSRs) mediate Ca2+ o-dependent control of 1α-hydroxylase using HEK-293 cells stably expressing the CaSR (HEK-CaSR cells). In HEK-CaSR cells, but not control HEK-293 cells, cotransfected with reporter genes for CYP27B1-Photinus pyralis (firefly) luciferase and control Renilla luciferase, an increase in Ca2+ o from 0.5mM to 3.0mM induced a 2- to 3-fold increase in firefly luciferase activity as well as mRNA and protein levels. Surprisingly, firefly luciferase was specifically suppressed at Ca2+ o ≥ 5.0mM, demonstrating biphasic Ca2+ o control. Both phases were mediated by CaSRs as revealed by positive and negative modulators. However, Ca2+ o induced simple monotonic increases in firefly luciferase and endogenous CYP27B1 mRNA levels, indicating that the inhibitory effect of high Ca2+ o was posttranscriptional. Studies with inhibitors and the CaSR C-terminal mutant T888A identified roles for protein kinase C (PKC), phosphorylation of T888, and extracellular regulated protein kinase (ERK)1/2 in high Ca2+ o-dependent suppression of firefly luciferase. Blockade of both PKC and ERK1/2 abolished Ca2+ o-stimulated firefly luciferase, demonstrating that either PKC or ERK1/2 is sufficient to stimulate the CYP27B1 promoter. A key CCAAT box (-74 bp to -68 bp), which is regulated downstream of PKC and ERK1/2, was required for both basal transcription and Ca2+ o-mediated transcriptional upregulation. The CaSR mediates Ca2+ o-dependent transcriptional upregulation of 1α-hydroxylase and an additional CaSR-mediated mechanism is identified by which Ca2+ o can promote luciferase and possibly 1α-hydroxylase breakdown.

20.
Molecules ; 26(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562080

ABSTRACT

The role of cannabinoid receptors in nephropathy is gaining much attention. This study investigated the effects of two neutral CB1 receptor antagonists, AM6545 and AM4113, on nephropathy associated with metabolic syndrome (MetS). MetS was induced in rats by high-fructose high-salt feeding for 12 weeks. AM6545, the peripheral silent antagonist and AM4113, the central neutral antagonist were administered in the last 4 weeks. At the end of study, blood and urine samples were collected for biochemical analyses while the kidneys were excised for histopathological investigation and transforming growth factor beta 1 (TGFß1) measurement. MetS was associated with deteriorated kidney function as indicated by the elevated proteinuria and albumin excretion rate. Both compounds equally inhibited the elevated proteinuria and albumin excretion rate while having no effect on creatinine clearance and blood pressure. In addition, AM6545 and AM4113 alleviated the observed swelling and inflammatory cells infiltration in different kidney structures. Moreover, AM6545 and AM4113 alleviated the observed histopathological alterations in kidney structure of MetS rats. MetS was associated with a ten-fold increase in urine uric acid while both compounds blocked this increase. Furthermore, AM6545 and AM4113 completely prevented the collagen deposition and the elevated expression of the TGFß1 seen in MetS animals. In conclusion, AM6545 and AM4113, possess reno-protective effects by interfering with TGFß1-mediated renal inflammation and fibrosis, via peripheral action.


Subject(s)
Kidney/drug effects , Kidney/pathology , Metabolic Syndrome/drug therapy , Morpholines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Animals , Cytoprotection/drug effects , Fibrosis , Inflammation/metabolism , Kidney/metabolism , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Morpholines/therapeutic use , Pyrazoles/therapeutic use , Rats , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...