Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Sci (Lond) ; 95(4): 425-33, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9748418

ABSTRACT

1. An earlier study by our group revealed that the viscosity of faeces from patients with Crohn's disease is significantly lower than that of healthy subjects. This is due to low concentrations of a high-molecular-mass carbohydrate, probably of bacterial origin. The cause of this phenomenon might be the impaired barrier function of the gut mucosa. Low viscosity may allow close contact of intestinal contents (bacterial products and toxins) with the intestinal wall. This could play a role in the maintenance of the disease.2. The first aim of this study was to investigate the high-molecular-mass carbohydrate fraction, responsible for viscosity, in detail. We also tried (in a pilot study) to raise the intestinal viscosity of patients with Crohn's disease with the undegradable food additive hydroxypropylcellulose (E463), in an attempt to alleviate clinical symptoms.3. The high-molecular-mass fraction (>300 kDa) responsible for faecal viscosity was sensitive to lysozyme and contained high levels of muramic acid. It was concluded that this material consisted mainly of peptidoglycan polysaccharides and was consequently of bacterial origin. The muramic acid in material from patients with Crohn's disease was 7.5 (1.5-13.9)%, which was less than in healthy subjects [11.4 (8.5-24.1)%; P=0.0004]. Furthermore, viscosity in material from patients with Crohn's disease was found to be half [14.9 (1.0-33.6) cP] of that found in healthy subjects [35.0 (2.7-90.7) cP; P=0.004].4.A daily dose of 1 g of hydroxypropylcellulose caused an increase in faecal viscosity in patients with Crohn's disease (from 1.4 to 2.3 cP) and in healthy subjects (from 4.9 to 7.5 cP). Faecal consistency improved in patients with Crohn's disease (from watery and loose to formed) and the defecation frequency decreased from 3-4 to about 2 times a day. No changes in defecation patterns were found in healthy subjects.5. These data indicate that the high-molecular-mass fraction that is responsible for faecal viscosity is peptidoglycan. Furthermore, a daily dose of a hydroxypropylcellulose solution to increase the viscosity of the intestinal contents of patients with Crohn's disease might be beneficial. This approach merits further study.


Subject(s)
Crohn Disease/metabolism , Feces/chemistry , Peptidoglycan/isolation & purification , Adult , Aged , Bacteria/metabolism , Cellulose/analogs & derivatives , Cellulose/therapeutic use , Chromatography, Gel , Crohn Disease/therapy , Food Additives/therapeutic use , Humans , Middle Aged , Molecular Weight , Statistics, Nonparametric , Viscosity/drug effects
3.
Thromb Haemost ; 65(2): 144-8, 1991 Feb 12.
Article in English | MEDLINE | ID: mdl-1905069

ABSTRACT

An analysis was made of the various possible activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction (DEF) of human plasma. scu-PA activators were detected in an assay system in which the substrate scu-PA, in physiological concentration (50 pM), was immuno-immobilized. After activation of the immobilized scu-PA for a certain period of time the activity of the generated amount of immuno-immobilized two-chain u-PA was determined with plasminogen and the chromogenic substrate S-2251. The scu-PA activator activity (scuPA-AA) in the DEF of plasmas deficient in factor XII or prekallikrein was about half of that in the DEF of normal plasma. Separation of scuPA-AA in the DEF by gel chromatography showed to major peaks, one eluting with an apparent Mr of 500,000 and the other around Mr 100,000. The former peak, which coincided with the activity peak of the kallikrein-kininogen complex, was absent in the DEF of plasma depleted of prekallikrein and therefore was identified as kallikrein. The latter peak was still present in the depleted plasma and most likely represents plasmin, because its scuPA-AA coincided with the activity peak of plasmin and could be fully inhibited by antibodies raised against human plasminogen. It is concluded that plasmin and the contact-activation factor kallikrein each contribute for about 50% to the scuPA-AA in the DEF. Compared on a molar basis, however, plasmin was found to be almost 1,000 times more effective than kallikrein, and we conclude, therefore, that in vivo plasmin is the primary activator of scu-PA and the role of the contact system is of secondary importance.


Subject(s)
Factor XII/physiology , Plasminogen Activators/metabolism , Prekallikrein/physiology , Serum Globulins/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Chemical Fractionation/methods , Chromatography, Gel , Dextran Sulfate , Humans
4.
Thromb Haemost ; 64(3): 390-7, 1990 Nov 30.
Article in English | MEDLINE | ID: mdl-2128968

ABSTRACT

Apart from tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), a third PA appears to occur in human plasma. Its activity is initiated when appropriate triggers of the contact system are added, and the activation depends on the presence of factor XII and prekallikrein in plasma. The activity of this, so-called, contact-system dependent PA accounts for 30% of the PA activity in the dextran sulphate euglobulin fraction of plasma and was shown not to be an intrinsic property of one of the contact-system components, nor could it be inhibited by inhibitory antibodies against t-PA or u-PA. We have succeeded in identifying this third PA in dextran sulphate euglobulin fractions of human plasma. Its smallest unit (SDS-PAGE) is an inactive 110 kDa single-chain polypeptide which upon activation of the contact system is converted to a cleaved, disulphide-bridged molecule with PA activity. The native form, presumably, is an oligomer, since the apparent Mr on gel-chromatography is 600,000. The IEP is 4.8, much lower than that of t-PA and u-PA. Although the active 110 kDa polypeptide cannot be inhibited by anti-u-PA, it yet comprises a 37 kDa piece with some u-PA related antigenic determinants. However, these determinants are in a latent or cryptic form, only detectable after denaturation by SDS. The 110 kDa polypeptide is evidently not a dimer of 55 kDa u-PA or a complex of u-PA with an inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Plasminogen Activators/blood , Antibodies/immunology , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Enzyme Precursors/blood , Humans , Immunoassay , Kallikreins/blood , Plasminogen Activators/chemistry , Plasminogen Activators/immunology , Prekallikrein/metabolism , Urokinase-Type Plasminogen Activator/immunology
5.
Biochem Biophys Res Commun ; 142(1): 162-8, 1987 Jan 15.
Article in English | MEDLINE | ID: mdl-3101686

ABSTRACT

Plasma urokinase, a plasminogen activator immunochemically related to urinary urokinase (UK), was removed from human plasma (3.5 ng/ml) by immuno-depletion with antibodies raised against UK. The remaining plasminogen activator activity of the depleted plasma could not be inhibited by anti-UK antibodies and a sensitive ELISA for UK did not detect any UK levels that were higher than the background of the assay (0.1 ng/ml). However, when the depleted plasma was subjected to SDS-PAGE, substantial amounts of protein were found hereafter around 110 and 46 kD which now gave a positive reaction in the ELISA (35-350 ng/ml plasma). From these observations it is concluded that in human plasma two types of UK-related protein occur: Type I, among which the plasma urokinase, has antigenic determinants which are directly accessible to the anti-UK antibodies, Type II has determinants in a latent form. The function of the 110 kD type-II protein is that of a plasminogen activator; that of the 46 kD protein is not yet clear.


Subject(s)
Urokinase-Type Plasminogen Activator/blood , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Humans , Molecular Weight , Sodium Dodecyl Sulfate/pharmacology , Tissue Plasminogen Activator/analysis , Urokinase-Type Plasminogen Activator/classification , Urokinase-Type Plasminogen Activator/immunology
6.
Thromb Res ; 43(5): 569-77, 1986 Sep 01.
Article in English | MEDLINE | ID: mdl-3750278

ABSTRACT

An ELISA was set up using polyvinylchloride microtiter plates coated with rabbit anti-UK IgG's and affino-purified goat anti-UK IgG's as second antibody. Detection occurred with rabbit anti-goat IgG antibodies conjugated with alkaline phosphatase. The assay is specific for urokinase (UK) with a detection limit of 100 pg/ml sample. Tissue-type plasminogen activator, up to concentrations of 100 ng/ml, does not interfere. The assay measures the antigen of the inactive zymogen pro-UK, the active enzyme UK and the UK-inhibitor complex with equal efficiency and gives the total UK antigen present, irrespective of its molecular form. Culture media of fibroblasts, endothelial- and kidney cells showed, despite the absence of active UK, antigen levels of 1.2, 23 and 65 ng/ml, respectively. In human plasma the UK concentration was found to be 3.5 +/- 1.4 ng/ml (mean +/- SD, n = 54). The inter- and intra-assay variations were 20% and 6%, respectively.


Subject(s)
Urokinase-Type Plasminogen Activator/analysis , Animals , Antibodies , Antigen-Antibody Complex , Aorta/enzymology , Carcinoma, Squamous Cell/enzymology , Cell Line , Chlorocebus aethiops , Culture Media , Endothelium/enzymology , Enzyme-Linked Immunosorbent Assay , Fibroblasts/enzymology , Humans , Isoflurophate/pharmacology , Kidney , Liver/enzymology , Melanoma/enzymology , Reference Values , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/blood
7.
Thromb Res ; 42(6): 761-8, 1986 Jun 15.
Article in English | MEDLINE | ID: mdl-2425448

ABSTRACT

The specific fibrinolytic properties of both high molecular weight (55 kd) and low molecular weight (30 kd) pro-urokinase from a monkey kidney cell culture were evaluated in a plasma clot lysis system and compared with those of human urokinase. The system was composed of a radiolabelled plasma clot immersed in plasma containing the fibrinolytic agent. On unit base, 55 kd pro-urokinase was approximately 1.5 times more effective in lysing the clot than 30 kd pro-urokinase and equally effective as urokinase. In contrast to urokinase, both pro-urokinase forms induced clot lysis without degrading fibrinogen in the surrounding plasma. However, a considerable activation of the fibrinolytic system in the plasma occurred as a large amount of alpha 2-antiplasmin was consumed, indicating that pro-urokinase was not fully fibrin-specific. Quenching antibodies against tissue-type plasminogen activator (t-PA) added to the plasma clot lysis system retarded but did not prevent pro-urokinase-induced clot lysis. This indicated that not only was t-PA in plasma involved in the activation of pro-urokinase (probably via plasmin), but that an additional mechanism also existed.


Subject(s)
Fibrinolysis , Plasminogen Activators/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Animals , Enzyme Activation , Enzyme Precursors/metabolism , Fibrinogen/metabolism , Fibrinolysin/metabolism , In Vitro Techniques , Kidney/enzymology , Macaca fascicularis , Molecular Weight , Substrate Specificity , Tissue Plasminogen Activator/metabolism , alpha-2-Antiplasmin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...