Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Vet Microbiol ; 144(3-4): 478-83, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20153589

ABSTRACT

Two-component systems (TCSs) are the predominant bacterial signal transduction mechanisms. Species of the genus Brucella are genetically highly related and differ mainly in mammalian host adaptation and pathogenesis. In this study, TCS proteins encoded in the available genome sequences of Brucella species have been identified using bioinformatic methods. All the Brucella species share an identical set of TCS proteins, and the number of TCS proteins in the closely related opportunistic human pathogen Ochrobactrum anthropi was higher than in Brucella species as expected from its lifestyle. O. anthropi lacks orthologs of the Brucella TCSs NodVW, TceSR and TcfSR, suggesting that these TCS proteins could be necessary for the adaptation of Brucella as an intracellular pathogen. This genomic analysis revealed the presence of a differential distribution of TCS pseudogenes among Brucella species. Moreover, there were also differences in TCS pseudogenes between strains belonging to the same Brucella species, and in particular between B. suis biovars 1 and 2.


Subject(s)
Brucella/genetics , Signal Transduction/genetics , Animals , Chromosomes, Bacterial , Genome, Bacterial , Humans , Ochrobactrum anthropi/genetics , Species Specificity
2.
Stand Genomic Sci ; 1(2): 204-15, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-21304658

ABSTRACT

We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.

3.
PLoS Genet ; 4(8): e1000163, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18725932

ABSTRACT

Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are targeted by the common bacterial Sm-like protein, Hfq. Initial transcriptomic analysis revealed that Hfq controls the expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from RNA co-immunoprecipitation (coIP) with epitope-tagged Hfq or control coIP, identified 727 mRNAs that are Hfq-bound in vivo. The cDNA analysis discovered new, small noncoding RNAs (sRNAs) and more than doubled the number of sRNAs known to be expressed in Salmonella to 64; about half of these are associated with Hfq. Our analysis explained aspects of the pleiotropic effects of Hfq loss-of-function. Specifically, we found that the mRNAs of hilD (master regulator of the SPI-1 invasion genes) and flhDC (flagellar master regulator) were bound by Hfq. We predicted that defective SPI-1 secretion and flagellar phenotypes of the hfq mutant would be rescued by overexpression of HilD and FlhDC, and we proved this to be correct. The combination of epitope-tagging and HTPS of immunoprecipitated RNA detected the expression of many intergenic chromosomal regions of Salmonella. Our approach overcomes the limited availability of high-density microarrays that have impeded expression-based sRNA discovery in microorganisms. We present a generic strategy that is ideal for the systems-level analysis of the post-transcriptional regulons of RNA-binding proteins and for sRNA discovery in a wide range of bacteria.


Subject(s)
Host Factor 1 Protein/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Untranslated/genetics , Salmonella typhimurium/genetics , Sequence Analysis, DNA/methods , Flagella/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/genetics , Molecular Sequence Data , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Regulon , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Virulence
4.
Foodborne Pathog Dis ; 5(4): 371-86, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18713059

ABSTRACT

Campylobacter lari is a member of the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter group, a clade that includes the human pathogen C. jejuni. Here we present the complete genome sequence of the human clinical isolate, C. lari RM2100. The genome of strain RM2100 is approximately 1.53 Mb and includes the 46 kb megaplasmid pCL2100. Also present within the strain RM2100 genome is a 36 kb putative prophage, termed CLIE1, which is similar to CJIE4, a putative prophage present within the C. jejuni RM1221 genome. Nearly all (90%) of the gene content in strain RM2100 is similar to genes present in the genomes of other characterized thermotolerant campylobacters. However, several genes involved in amino acid biosynthesis and energy metabolism, identified previously in other Campylobacter genomes, are absent from the C. lari RM2100 genome. Therefore, C. lari RM2100 is predicted to be multiply auxotrophic, unable to synthesize eight different amino acids, acetyl-coA, and pantothenate. Additionally, strain RM2100 does not contain a complete TCA cycle and is missing the CydAB terminal oxidase of the respiratory chain. Defects in the amino acid biosynthetic pathways in this organism could be potentially compensated by the large number of encoded peptidases. Nevertheless, the apparent absence of certain key enzymatic functions in strain RM2100 would be expected to have an impact on C. lari biology. It is also possible that the reduction in the C. lari metabolic machinery is related to its environmental range and host preference.


Subject(s)
Campylobacter lari/genetics , Genome, Bacterial , Prophages/genetics , Campylobacter lari/metabolism , Chromosome Mapping , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Genes, Bacterial , Humans , Molecular Sequence Data , Plasmids , Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, Protein
5.
BMC Microbiol ; 8: 110, 2008 Jun 30.
Article in English | MEDLINE | ID: mdl-18590559

ABSTRACT

BACKGROUND: Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogroup emerged in Southeast Asia causing large outbreaks and rapid hospitalizations. This new highly virulent strain is now globally disseminated. RESULTS: We performed a four-way BLAST analysis on the genome sequence of V. parahaemolyticus RIMD2210633, an O3:K6 isolate from Japan recovered in 1996, versus the genomes of four published Vibrio species and constructed genome BLAST atlases. We identified 24 regions, gaps in the genome atlas, of greater than 10 kb that were unique to RIMD2210633. These 24 regions included an integron, f237 phage, 2 type III secretion systems (T3SS), a type VI secretion system (T6SS) and 7 Vibrio parahaemolyticus genomic islands (VPaI-1 to VPaI-7). Comparative genomic analysis of our fifth genome, V. parahaemolyticus AQ3810, an O3:K6 isolate recovered in 1983, identified four regions unique to each V. parahaemolyticus strain. Interestingly, AQ3810 did not encode 8 of the 24 regions unique to RMID, including a T6SS, which suggests an additional virulence mechanism in RIMD2210633. The distribution of only the VPaI regions was highly variable among a collection of 42 isolates and phylogenetic analysis of these isolates show that these regions are confined to a pathogenic clade. CONCLUSION: Our data show that there is considerable genomic flux in this species and that the new highly virulent clone arose from an O3:K6 isolate that acquired at least seven novel regions, which included both a T3SS and a T6SS.


Subject(s)
Disease Outbreaks , Genome, Bacterial , Vibrio Infections/epidemiology , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Bacterial Typing Techniques , Base Sequence , Chromosome Mapping , Chromosomes, Bacterial/genetics , Computational Biology , DNA, Bacterial/genetics , Genomic Islands , Phylogeny , Sequence Alignment , Vibrio parahaemolyticus/classification , Virulence
6.
BMC Genomics ; 9: 271, 2008 Jun 04.
Article in English | MEDLINE | ID: mdl-18522759

ABSTRACT

BACKGROUND: Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast-growing, submergence-tolerant tropical legume on which A. caulinodans can efficiently induce nodule formation on the root system and on adventitious rootlets located on the stem. RESULTS: The 5.37-Mb genome consists of a single circular chromosome with an overall average GC of 67% and numerous islands with varying GC contents. Most nodulation functions as well as a putative type-IV secretion system are found in a distinct symbiosis region. The genome contains a plethora of regulatory and transporter genes and many functions possibly involved in contacting a host. It potentially encodes 4717 proteins of which 96.3% have homologs and 3.7% are unique for A. caulinodans. Phylogenetic analyses show that the diazotroph Xanthobacter autotrophicus is the closest relative among the sequenced genomes, but the synteny between both genomes is very poor. CONCLUSION: The genome analysis reveals that A. caulinodans is a diazotroph that acquired the capacity to nodulate most probably through horizontal gene transfer of a complex symbiosis island. The genome contains numerous genes that reflect a strong adaptive and metabolic potential. These combined features and the availability of the annotated genome make A. caulinodans an attractive organism to explore symbiotic biological nitrogen fixation beyond leguminous plants.


Subject(s)
Azorhizobium caulinodans/genetics , Genome, Bacterial , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Azorhizobium caulinodans/classification , Azorhizobium caulinodans/metabolism , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fabaceae/microbiology , Nitrogen Fixation/genetics , Phylogeny , Replication Origin , Symbiosis/genetics , Symbiosis/physiology , Xanthobacter/classification , Xanthobacter/genetics
7.
Mol Biosyst ; 4(5): 363-71, 2008 May.
Article in English | MEDLINE | ID: mdl-18414733

ABSTRACT

The development of fast and inexpensive methods for sequencing bacterial genomes has led to a wealth of data, often with many genomes being sequenced of the same species or closely related organisms. Thus, there is a need for visualization methods that will allow easy comparison of many sequenced genomes to a defined reference strain. The BLASTatlas is one such tool that is useful for mapping and visualizing whole genome homology of genes and proteins within a reference strain compared to other strains or species of one or more prokaryotic organisms. We provide examples of BLASTatlases, including the Clostridium tetani plasmid p88, where homologues for toxin genes can be easily visualized in other sequenced Clostridium genomes, and for a Clostridium botulinum genome, compared to 14 other Clostridium genomes. DNA structural information is also included in the atlas to visualize the DNA chromosomal context of regions. Additional information can be added to these plots, and as an example we have added circles showing the probability of the DNA helix opening up under superhelical tension. The tool is SOAP compliant and WSDL (web services description language) files are located on our website: (http://www.cbs.dtu.dk/ws/BLASTatlas), where programming examples are available in Perl. By providing an interoperable method to carry out whole genome visualization of homology, this service offers bioinformaticians as well as biologists an easy-to-adopt workflow that can be directly called from the programming language of the user, hence enabling automation of repeated tasks. This tool can be relevant in many pangenomic as well as in metagenomic studies, by giving a quick overview of clusters of insertion sites, genomic islands and overall homology between a reference sequence and a data set.


Subject(s)
Databases, Genetic , Genome, Bacterial/genetics , Software , Amino Acid Sequence , Bacterial Toxins/genetics , Computational Biology , Molecular Sequence Data , Sequence Alignment , Sequence Homology
8.
PLoS One ; 2(12): e1358, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18159241

ABSTRACT

BACKGROUND: Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018. METHODOLOGY/PRINCIPAL FINDINGS: Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains. CONCLUSION/SIGNIFICANCE: The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts.


Subject(s)
Arcobacter/genetics , Genome, Bacterial , Amino Acids, Sulfur/biosynthesis , Arcobacter/classification , Arcobacter/metabolism , Arcobacter/pathogenicity , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Pair Mismatch , Base Sequence , Chemotaxis , DNA Primers , DNA Repair , Electrophoresis, Polyacrylamide Gel , Oxidation-Reduction , Phylogeny , Signal Transduction , Sulfur/metabolism , Virulence/genetics
9.
Funct Integr Genomics ; 6(3): 165-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16773396

ABSTRACT

It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this information.


Subject(s)
Genome, Bacterial , Genomics/methods , Bacterial Vaccines/biosynthesis , Computer Simulation , Databases, Nucleic Acid/statistics & numerical data , Genetic Code , Genetic Variation , Genomic Islands , History, 20th Century , Intellectual Property , Interspersed Repetitive Sequences , Models, Genetic , Phylogeny , Proteome/analysis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...