Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 257: 124385, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36827941

ABSTRACT

A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 105, which significantly improves the detection resolution is described based on a structure of single mode -core-only -single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S. aureus). The developed microfiber-based biosensing platform called SCS-based EDFL biosensors can effectively detect concentrations of S. aureus from 10 to 105 CFU/mL, with a responsivity of 0.426 nm wavelength shift in the measured spectrum for S. aureus concentration of 10 CFU/mL. The limit of detection (LoD) is estimated as 7.3 CFU/mL based on the measurement of S. aureus with minimum concentration of 10 CFU/mL. In addition, when a lower concentration of 1 CFU/mL is applied to the biosensor, a wavelength shift of 0.12 nm is observed in 10% of samples (1/10), indicating actual LoD of 1 CFU/mL for the proposed biosensor. Attributed to its good sensitivity, stability, reproducibility and specificity, the proposed EDFL based biosensing platform has great potentials for diagnostics.


Subject(s)
Biosensing Techniques , Staphylococcal Infections , Animals , Swine , Staphylococcus aureus , Erbium , Reproducibility of Results , Immunoglobulin G , Lasers
2.
Microsyst Nanoeng ; 8: 99, 2022.
Article in English | MEDLINE | ID: mdl-36119378

ABSTRACT

Flexible human-machine interfaces show broad prospects for next-generation flexible or wearable electronics compared with their currently available bulky and rigid counterparts. However, compared to their rigid counterparts, most reported flexible devices (e.g., flexible loudspeakers and microphones) show inferior performance, mainly due to the nature of their flexibility. Therefore, it is of great significance to improve their performance by developing and optimizing new materials, structures and design methodologies. In this paper, a flexible acoustic platform based on a zinc oxide (ZnO) thin film on an aluminum foil substrate is developed and optimized; this platform can be applied as a loudspeaker, a microphone, or an ambient sensor depending on the selection of its excitation frequencies. When used as a speaker, the proposed structure shows a high sound pressure level (SPL) of ~90 dB (with a standard deviation of ~3.6 dB), a low total harmonic distortion of ~1.41%, and a uniform directivity (with a standard deviation of ~4 dB). Its normalized SPL is higher than those of similar devices reported in the recent literature. When used as a microphone, the proposed device shows a precision of 98% for speech recognition, and the measured audio signals show a strong similarity to the original audio signals, demonstrating its equivalent performance compared to a rigid commercial microphone. As a flexible sensor, this device shows a high temperature coefficient of frequency of -289 ppm/K and good performance for respiratory monitoring.

3.
Article in English | MEDLINE | ID: mdl-34524958

ABSTRACT

Surface acoustic wave (SAW) devices are increasingly applied in life sciences, biology, and point-of-care applications due to their combined acoustofluidic sensing and actuating properties. Despite the advances in this field, there remain significant gaps in interfacing hardware and control strategies to facilitate system integration with high performance and low cost. In this work, we present a versatile and digitally controlled acoustofluidic platform by demonstrating key functions for biological assays such as droplet transportation and mixing using a closed-loop feedback control with image recognition. Moreover, we integrate optical detection by demonstrating in situ fluorescence sensing capabilities with a standard camera and digital filters, bypassing the need for expensive and complex optical setups. The Acousto-Pi setup is based on open-source Raspberry Pi hardware and 3-D printed housing, and the SAW devices are fabricated with piezoelectric thin films on a metallic substrate. The platform enables the control of droplet position and speed for sample processing (mixing and dilution of samples), as well as the control of temperature based on acousto-heating, offering embedded processing capability. It can be operated remotely while recording the measurements in cloud databases toward integrated in-field diagnostic applications such as disease outbreak control, mass healthcare screening, and food safety.


Subject(s)
Electronics , Sound , Feedback , Point-of-Care Systems
4.
Sensors (Basel) ; 20(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050504

ABSTRACT

This paper proposes a low-complexity and energy-efficient light emitting diode (LED)-to-LED communication system for Internet of Things (IoT) devices with data rates up to 200 kbps over an error-free transmission distance up to 7 cm. The system is based on off-the-shelf red-green-blue (RGB) LEDs, of which the red sub-LED is employed as photodetector in photovoltaic mode while the green sub-LED is the transmitter. The LED photodetector is characterized in the terms of its noise characteristics and its response to the light intensity. The system performance is then analysed in terms of bandwidth, bit error rate (BER) and the signal to noise ratio (SNR). A matched filter is proposed, which optimises the performance and increases the error-free distance.

5.
ACS Sens ; 5(8): 2563-2569, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32686395

ABSTRACT

Versatile, in situ sensing and continuous monitoring capabilities are critically needed, but challenging, for components made of solid woven carbon fibers in aerospace, electronics, and medical applications. In this work, we proposed a unique concept of integrated sensing technology on woven carbon fibers through integration of thin-film surface acoustic wave (SAW) technology and electromagnetic metamaterials, with capabilities of noninvasive, in situ, and continuous monitoring of environmental parameters and biomolecules wirelessly. First, we fabricated composite materials using a three-layer composite design, in which the woven carbon fiber cloth was first coated with a polyimide (PI) layer followed by a layer of ZnO film. Integrated SAW and metamaterials devices were then fabricated on this composite structure. The temperature of the functional area of the device could be controlled precisely using the SAW devices, which could provide a proper incubation environment for biosampling processes. As an ultraviolet light sensor, the SAW device could achieve a good sensitivity of 56.86 ppm/(mW/cm2). On the same integrated platform, an electromagnetic resonator based on the metamaterials was demonstrated to work as a glucose concentration monitor with a sensitivity of 0.34 MHz/(mg/dL).


Subject(s)
Electronics , Sound , Carbon Fiber , Monitoring, Physiologic
6.
Biosens Bioelectron ; 145: 111563, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31574351

ABSTRACT

A critical barrier for the successful development of fiber sensors for bio-chemical processes is their limitedly improved sensitivity, restricted by the sensor structural design. To solve this, in this paper, a novel concept was proposed using functionalised modified magnetic microspheres (MMSs) to "amplify" the effect of target bio-chemical analytes to significantly improve the fiber sensor's sensitivity, which has been demonstrated using human chorionic gonadotropin (hCG) as an example. Two types of antibody hCG, (ß and α, both can specifically bind with hCG), were adhered on the surface of fibre sensor and MMSs respectively. Both hCG and MMSs will be specifically captured by the fibre sensor, where MMSs act as an "amplifier" to improve the sensor sensitivity. Experimentally immunomagnetic detection limit of 0.0001 mIU/mL has been achieved, which is the highest reported so far. This newly developed methodology opens a new direction for sensitivity improvement and could be further explored to applications require ultrahigh sensitivity detections such as earlier medical diagnostics.


Subject(s)
Biosensing Techniques , Chorionic Gonadotropin/isolation & purification , Interferometry , Chorionic Gonadotropin/chemistry , Humans , Limit of Detection , Magnetics , Microspheres
7.
8.
Sci Rep ; 8(1): 11803, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30087392

ABSTRACT

A polarization-dependent all-fiber comb filter based on a combination effect of multimode interference and Mach-Zehnder interferometer was proposed and demonstrated. The comb filter was composed with a short section of multimode fiber (MMF) fusion spliced with a conventional single mode fiber on the one side and a short section of a different type of optical fiber on the other side. The second type of optical fiber is spliced to the MMF with a properly designed misalignment. Different types and lengths of fibers were used to investigate the influence of fiber types and lengths on the performance of the comb filter. Experimentally, several comb filters with free spectral range (FSR) values ranging from 0.236 to 1.524 nm were achieved. The extinction ratio of the comb filter can be adjusted from 6 to 11.1 dB by varying polarization states of the input light, while maintaining the FSR unchanged. The proposed comb filter has the potential to be used in optical dense wavelength division multiplexing communication systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...