Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(8): e18264, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37533989

ABSTRACT

The designing of new materials having outstanding nonlinear optical (NLO) response is much needed for use in latest optics. Herein, the geometric, electronic and NLO properties of alkali and alkaline earth metals doped C6O6Li6 (alk-C6O6Li6-alkearth, alkearth = Ca, Mg, Be and alk = K, Na, Li) electrides is studied via quantum chemical approach. The interaction energies (Eint) are examined to illustrate their thermodynamic stability. The strong interaction energy of -39.99 kcal mol-1 is observed for Ca-C6O6Li6-Li electride in comparison to others. Frontier molecular orbitals (FMOs) energy gap of considered complexes is changed due to the electronic density shifting between metals and C6O6Li6 surface, which notifies the semi conducting properties of these electrides. The FMOs isodensities and natural bond orbital (NBO) charge analysis are performed to justify charge transfer between dopants and complexant. UV-Visible study also confirmed the application of these electrides as deep ultra-violet laser devices. NLO response is studied through calculation of first hyperpolarizability (ßo). The highest ßo value of 1.68 × 105 au is calculated for Mg-C6O6Li6-K electride. NLO response is further rationalized by three- and two-level models approach.

2.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241800

ABSTRACT

The toxicity of transition metals, including copper(II), manganese(II), iron(II), zinc(II), hexavalent chromium, and cobalt(II), at elevated concentrations presents a significant threat to living organisms. Thus, the development of efficient sensors capable of detecting these metals is of utmost importance. This study explores the utilization of two-dimensional nitrogenated holey graphene (C2N) nanosheet as a sensor for toxic transition metals. The C2N nanosheet's periodic shape and standard pore size render it well suited for adsorbing transition metals. The interaction energies between transition metals and C2N nanosheets were calculated in both gas and solvent phases and were found to primarily result from physisorption, except for manganese and iron which exhibited chemisorption. To assess the interactions, we employed NCI, SAPT0, and QTAIM analyses, as well as FMO and NBO analysis, to examine the electronic properties of the TM@C2N system. Our results indicated that the adsorption of copper and chromium significantly reduced the HOMO-LUMO energy gap of C2N and significantly increased its electrical conductivity, confirming the high sensitivity of C2N towards copper and chromium. The sensitivity test further confirmed the superior sensitivity and selectivity of C2N towards copper. These findings offer valuable insight into the design and development of sensors for the detection of toxic transition metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...