Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302595, 2024.
Article in English | MEDLINE | ID: mdl-38718024

ABSTRACT

Diabetes Mellitus is one of the oldest diseases known to humankind, dating back to ancient Egypt. The disease is a chronic metabolic disorder that heavily burdens healthcare providers worldwide due to the steady increment of patients yearly. Worryingly, diabetes affects not only the aging population but also children. It is prevalent to control this problem, as diabetes can lead to many health complications. As evolution happens, humankind starts integrating computer technology with the healthcare system. The utilization of artificial intelligence assists healthcare to be more efficient in diagnosing diabetes patients, better healthcare delivery, and more patient eccentric. Among the advanced data mining techniques in artificial intelligence, stacking is among the most prominent methods applied in the diabetes domain. Hence, this study opts to investigate the potential of stacking ensembles. The aim of this study is to reduce the high complexity inherent in stacking, as this problem contributes to longer training time and reduces the outliers in the diabetes data to improve the classification performance. In addressing this concern, a novel machine learning method called the Stacking Recursive Feature Elimination-Isolation Forest was introduced for diabetes prediction. The application of stacking with Recursive Feature Elimination is to design an efficient model for diabetes diagnosis while using fewer features as resources. This method also incorporates the utilization of Isolation Forest as an outlier removal method. The study uses accuracy, precision, recall, F1 measure, training time, and standard deviation metrics to identify the classification performances. The proposed method acquired an accuracy of 79.077% for PIMA Indians Diabetes and 97.446% for the Diabetes Prediction dataset, outperforming many existing methods and demonstrating effectiveness in the diabetes domain.


Subject(s)
Diabetes Mellitus , Machine Learning , Humans , Diabetes Mellitus/diagnosis , Algorithms , Data Mining/methods , Support Vector Machine , Male
2.
Front Med (Lausanne) ; 11: 1349373, 2024.
Article in English | MEDLINE | ID: mdl-38686367

ABSTRACT

Although the detection procedure has been shown to be highly effective, there are several obstacles to overcome in the usage of AI-assisted cancer cell detection in clinical settings. These issues stem mostly from the failure to identify the underlying processes. Because AI-assisted diagnosis does not offer a clear decision-making process, doctors are dubious about it. In this instance, the advent of Explainable Artificial Intelligence (XAI), which offers explanations for prediction models, solves the AI black box issue. The SHapley Additive exPlanations (SHAP) approach, which results in the interpretation of model predictions, is the main emphasis of this work. The intermediate layer in this study was a hybrid model made up of three Convolutional Neural Networks (CNNs) (InceptionV3, InceptionResNetV2, and VGG16) that combined their predictions. The KvasirV2 dataset, which comprises pathological symptoms associated to cancer, was used to train the model. Our combined model yielded an accuracy of 93.17% and an F1 score of 97%. After training the combined model, we use SHAP to analyze images from these three groups to provide an explanation of the decision that affects the model prediction.

3.
Plants (Basel) ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475499

ABSTRACT

Our research focuses on addressing the challenge of crop diseases and pest infestations in agriculture by utilizing UAV technology for improved crop monitoring through unmanned aerial vehicles (UAVs) and enhancing the detection and classification of agricultural pests. Traditional approaches often require arduous manual feature extraction or computationally demanding deep learning (DL) techniques. To address this, we introduce an optimized model tailored specifically for UAV-based applications. Our alterations to the YOLOv5s model, which include advanced attention modules, expanded cross-stage partial network (CSP) modules, and refined multiscale feature extraction mechanisms, enable precise pest detection and classification. Inspired by the efficiency and versatility of UAVs, our study strives to revolutionize pest management in sustainable agriculture while also detecting and preventing crop diseases. We conducted rigorous testing on a medium-scale dataset, identifying five agricultural pests, namely ants, grasshoppers, palm weevils, shield bugs, and wasps. Our comprehensive experimental analysis showcases superior performance compared to various YOLOv5 model versions. The proposed model obtained higher performance, with an average precision of 96.0%, an average recall of 93.0%, and a mean average precision (mAP) of 95.0%. Furthermore, the inherent capabilities of UAVs, combined with the YOLOv5s model tested here, could offer a reliable solution for real-time pest detection, demonstrating significant potential to optimize and improve agricultural production within a drone-centric ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...