Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 125(3): 1124-8, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25642776

ABSTRACT

Idiopathic scoliosis (IS) is a spine deformity that affects approximately 3% of the population. The underlying causes of IS are not well understood, although there is clear evidence that there is a genetic component to the disease. Genetic mapping studies suggest high genetic heterogeneity, but no IS disease-causing gene has yet been identified. Here, genetic linkage analyses combined with exome sequencing identified a rare missense variant (p.A446T) in the centriolar protein gene POC5 that cosegregated with the disease in a large family with multiple members affected with IS. Subsequently, the p.A446T variant was found in an additional set of families with IS and in an additional 3 cases of IS. Moreover, POC5 variant p.A455P was present and linked to IS in one family and another rare POC5 variant (p.A429V) was identified in an additional 5 cases of IS. In a zebrafish model, expression of any of the 3 human IS-associated POC5 variant mRNAs resulted in spine deformity, without affecting other skeletal structures. Together, these findings indicate that mutations in the POC5 gene contribute to the occurrence of IS.


Subject(s)
Carrier Proteins/genetics , Scoliosis/genetics , Animals , Case-Control Studies , DNA Mutational Analysis , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Mutation, Missense , Pedigree , Polymorphism, Single Nucleotide , Zebrafish
2.
Eur J Hum Genet ; 19(8): 865-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21407261

ABSTRACT

Idiopathic scoliosis (IS) is a spine disorder of unknown origin with 1.5-3% prevalence in the general population. Besides the large multifactorial-form sample of IS, there is a good evidence for the existence of a monogenic subgroup in which the disease is inherited in a dominant manner. However, results from literature suggest a strong heterogeneity in the locations of the mutated genes. Using a high-resolution genome-wide scan, we performed linkage analyses in three large multigenerational IS families compatible with dominant inheritance including 9-12 affected members or obligate carriers. In two of these families, our results suggested intra-familial genetic heterogeneity, whereas, in the other, we observed a perfect marker disease co-segregation in two regions at 3q12.1 and 5q13.3. We can state that one of these two locations is a novel IS disease gene locus, as the probability of having this perfect co-segregation twice by chance in the genome is very low (P=0.001). Lastly, in all three families studied, linkage to the previously mapped dominant IS loci on chromosomes 19p13.3, 17p11.2, 9q34, 17q25 and 18q is unlikely, confirming that there is a high genetic heterogeneity within the subgroup of dominant forms of IS.


Subject(s)
Genetic Heterogeneity , Scoliosis/genetics , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 5 , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...