Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neurobiol Dis ; 86: 41-51, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26626080

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by dyskinesia, cognitive impairment and emotional disturbances, presenting progressive neurodegeneration in the striatum and intracellular mutant Huntingtin (mHTT) aggregates in various areas of the brain. Recombinant Adeno Associated Viral (rAAV) vectors have been successfully used to transfer foreign genes to the brain of adult animals. In the present study we report a novel in vivo rat HD model obtained by stereotaxic injection of rAAV serotype2/9 containing Exon1-Q138 mHTT (Q138) and Exon1-Q17 wild type HTT (Q17; control), respectively in the right and in the left striatum, and expressed as C-terminal GFP fusions to facilitate detection of infected cells and aggregate production. Immunohistochemical analysis of brain slices from animals sacrificed twenty-one days after viral infection showed that Q138 injection resulted in robust formation of GFP-positive aggregates in the striatum, increased GFAP and microglial activation and neurodegeneration, with little evidence of any of these events in contralateral tissue infected with wild type (Q17) expressing construct. Differences in the relative metabolite concentrations (N-Acetyl Aspartate/Creatine and Myo-Inositol/Creatine) were observed by H1 MR Spectroscopy. By quantitative RT-PCR we also demonstrated that mHTT induced changes in the expression of genes previously shown to be altered in other rodent HD models. Importantly, administration of reference compounds previously shown to ameliorate the aggregation and neurodegeneration phenotypes in preclinical HD models was demonstrated to revert the mutant HTT-dependent effects in our model. In conclusion, the AAV2/9-Q138/Q17 exon 1 HTT stereotaxic injection represents a useful first-line in vivo preclinical model for studying the biology of mutant HTT exon 1 in the striatum and to provide early evidence of efficacy of therapeutic approaches.


Subject(s)
Corpus Striatum/metabolism , Corpus Striatum/virology , Dependovirus/genetics , Disease Models, Animal , Drug Discovery/methods , Genetic Vectors/administration & dosage , Huntington Disease/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Animals , Corpus Striatum/pathology , Encephalitis/metabolism , Encephalitis/virology , Exons , Female , Green Fluorescent Proteins/metabolism , Huntingtin Protein , Huntington Disease/metabolism , Neuroglia/metabolism , Neurons/pathology , Neurons/virology , Rats , Rats, Wistar , Recombinant Proteins/metabolism
2.
J Med Chem ; 54(24): 8278-88, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22044209

ABSTRACT

Since the discovery of the endocannabinoid system, evidence has been progressively accumulating to suggest that 2-arachidonoylglycerol (2-AG) rather than anandamide (AEA) is the endogenous ligand for both cannabinoid (CB) receptors. Moreover, other studies have shown that another lipid molecule, 2-arachidonyl-glycerol ether (2-AGE, noladin ether), which acts as a full agonist at cannabinoid receptors, might occur in tissues. Having previously designed a resorcinol-AEA hybrid model, in this paper we have explored the cannabinoid receptor binding properties, the CB1 functional activity, and the stability to plasma esterases of a novel series of compounds characterized by the conversion of the amide head into the glycerol-ester or glycerol-ether head, typical of 2-AG or the "putative" endocannabinoid 2-AGE, respectively. Glyceryl esters 39 and 41 displayed greater potency for CB1 (Ki in the nanomolar range) than for CB2 receptors plus the potential to be exploited as useful hits for the development of novel 2-AG mimetics.


Subject(s)
Arachidonic Acids/chemical synthesis , Glycerides/chemical synthesis , Monoglycerides/chemical synthesis , Phenols/chemical synthesis , Receptor, Cannabinoid, CB1/metabolism , Resorcinols/chemical synthesis , Animals , Arachidonic Acids/chemistry , Arachidonic Acids/pharmacology , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Cytochrome P-450 CYP3A/chemistry , Endocannabinoids , Esterases/blood , Esters , Ethers/chemical synthesis , Ethers/chemistry , Ethers/pharmacology , Glycerides/chemistry , Glycerides/pharmacology , HEK293 Cells , Humans , In Vitro Techniques , Mice , Molecular Mimicry , Monoglycerides/chemistry , Monoglycerides/pharmacology , Phenols/chemistry , Phenols/pharmacology , Receptor, Cannabinoid, CB2/metabolism , Resorcinols/chemistry , Resorcinols/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...