Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 24(6): 756-64, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24633228

ABSTRACT

Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in chicken or human tumor cells, localizing in their nuclei as opposed to the cytoplasm of non-transformed cells. The present study was undertaken to investigate whether ABPs1 could potentiate apoptininduced apoptosis in HeLa cells. ABPs1 and the apoptin genes were successfully cloned into pIRES2-EGFP expression vector and expressed in HeLa cells. We report that ABPs1 augments apoptin cell growth inhibition in a concentration- and time-dependent manner. The DAPI staining and scanning electron microscopy observations revealed apoptotic bodies and plasma membrane pores, which were attributed to apoptin and ABPs1, respectively. Further, ABPs1 in combination with apoptin was found to increase the expression of Bax and to decrease the expression of survivin compared with either agent alone or the control. The apoptotic rate of HeLa cells treated with ABPs1 and apoptin in combination for 48 h was 53.95%. The two-gene combination increased the caspase-3 activity of HeLa cells. Taken together, our study suggests that ABPs1 combined with apoptin significantly inhibits HeLa cell proliferation, and induces cell apoptosis through membrane defects, up-regulation of Bax expression, down-regulation of survivin expression, and activation of the caspase-3 pathway. Thus, the combination of ABPs1 and apoptin could serve as a means to develop novel gene therapeutic agents against human cervical cancer.


Subject(s)
Apoptosis/drug effects , Capsid Proteins/pharmacology , Caspase 3/metabolism , Cecropins/pharmacology , Cell Membrane/drug effects , Uterine Cervical Neoplasms/enzymology , Caspase 3/genetics , Cell Membrane/metabolism , Cell Proliferation/drug effects , Drug Synergism , Female , HeLa Cells , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/physiopathology
2.
Gene ; 539(2): 224-9, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24525403

ABSTRACT

MicroRNAs (miRNAs) are small regulatory RNAs that play a significant role in eukaryotes by targeting mRNAs for cleavage or translational repression. Recent studies have also shown them to be associated with cellular changes following viral infection. Mink enteritis virus (MEV) is one of the most important viral pathogens in the mink industry. To study the involvement of miRNAs in the MEV infection process, we used Illumina's ultrahigh throughput approach to sequencing miRNA libraries from the feline kidney (F81) cell line before and after infection with MEV. Using this bioinformatics approach we identified 196 known mammalian miRNA orthologs belonging to 152 miRNA families in F81 cells. Additionally, 97 miRNA*s of these miRNAs were detected. As well as known miRNAs, 384 and 398 novel miRNA precursor candidates were identified in uninfected and MEV-infected F81 cells respectively that have not been reported in other mammals. In MEV-infected cells 3 miRNAs were significantly down-regulated and 4 up-regulated including 3 significantly. The majority (12 of 16) of randomly selected miRNA expression profiles by qRT-PCR were consistent with those identified by deep sequencing. A total of 88 miRNAs were predicted to target interferon-associated genes; 6 appear to target the 3'UTR of MEV-specific receptor transferring receptor mRNAs; and 8 to target the MEV mRNA coding region. No miRNAs coded by MEV itself were detected.


Subject(s)
Biomarkers/metabolism , Feline Panleukopenia/genetics , Gene Expression Profiling , Kidney/metabolism , MicroRNAs/genetics , Mink Viral Enteritis/genetics , Mink enteritis virus/pathogenicity , Animals , Cats , Cells, Cultured , Computational Biology , Feline Panleukopenia/virology , Kidney/virology , Mink Viral Enteritis/virology , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...