Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 42(7): 3764-3789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37227789

ABSTRACT

Glioblastoma (GBM) is an aggressive malignant type of brain tumor. Targeting one single intracellular pathway might not alleviate the disease, rather it activates the other molecular pathways that lead to the worsening of the disease condition. Therefore, in this study, we attempted to target both isocitrate dehydrogenase 1 (IDH1) and IDH2, which are one of the most commonly mutated proteins in GBM and other cancer types. Here, standard precision and extra precision docking, IFD, MM-GBSA, QikProp, and molecular dynamics (MD) simulation were performed to identify the potential dual inhibitor for IDH1 and IDH2 from the enamine database containing 59,161 ligands. Upon docking the ligands with IDH1 (PDB: 6VEI) and IDH2 (PDB: 6VFZ), the top eight ligands were selected, based on the XP Glide score. These ligands produced favourable MMGBSA scores and ADME characteristics. Finally, the top four ligands 12953, 44825, 51295, and 53210 were subjected to MD analysis. Interestingly, 53210 showed maximum interaction with Gln 277 for 99% in IDH1 and Gln 316 for 100% in IDH2, which are the crucial amino acids for the inhibitory function of IDH1 and IDH2 to target GBM. Therefore, the present study attempts to identify the novel molecules which could possess a pan-inhibitory action on both IDH1 and IDH that could be crucial in the management of GBM. Yet further evaluation involving in vitro and in vivo studies is warranted to support the data in our current study.Communicated by Ramaswamy H. Sarma.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Mutation , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Brain Neoplasms/drug therapy
2.
Int J Biol Macromol ; 253(Pt 5): 127142, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37797853

ABSTRACT

In the present study, polymeric nanoparticles loaded with IRI and quercetin, a p-gp inhibitor, were developed to target folate receptors expressed by colon cancer cells for oral targeted delivery. This work reports the development of PNPs with an entrapment efficiency of 41.26 ± 0.56 % for IRI and 55.83 ± 4.51 for QT. PNPs were further surface modified using chitosan-folic acid conjugates for better targetability to obtain folic acid-chitosan coated nanoparticles. DLS and FeSEM revealed particles in the nanometric size range with spherical morphology, while FTIR and DSC provided details on their structure and encapsulation. In vitro drug release studies confirmed a sustained release pattern of IRI and QT, while cell line studies confirmed the superiority of C-FA-PNPs when tested on Caco2 cells. Pharmacodynamic studies in colon cancer induced rats showed similar efficacy for PNPs and C-FA-PNPs. Further examination from a bio-distribution study in healthy rats, revealed the failure of C-FA-PNPs to deliver the drugs to the colon adequately, while the PNPs improved the available concentration of IRI at the colon by almost 1.8 folds when compared to the available marketed product. Hence, the developed PNP formulation sticks out as a plausible substitute for the intravenous dosage forms of IRI which have been conventionally prevailing.


Subject(s)
Chitosan , Colonic Neoplasms , Nanoparticles , Humans , Rats , Animals , Drug Carriers/chemistry , Chitosan/chemistry , Folic Acid/chemistry , Caco-2 Cells , Polymers/chemistry , Nanoparticles/chemistry , Colonic Neoplasms/drug therapy
3.
Eur J Pharmacol ; 959: 176067, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37751833

ABSTRACT

Parkinson's Disease (PD) is the most rapidly growing neurological disorder globally in terms of disability and mortality. While symptomatic treatment is available for PD, there is a critical unmet need for effective disease-modifying therapies. Recently, histone deacetylase inhibitors (HDACi), an important class of epigenetic modulators grabbed significant attention as drug targets for neurodegenerative diseases including PD. In this regard, novel pan-HDACi, cinnamyl sulphonamide hydroxamate derivatives (NMJ-2 and NMJ-3), synthesized and characterized in our laboratory, were screened for neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rat model of PD. Twenty-four hours after the bilateral intranigral injection of MPTP, rats were administered orally with NMJ-2 or NMJ-3 (150 mg/kg) daily for 30 days. MPTP administration resulted in a marked rise in lipid peroxidation, and interleukin-1ß concentration accompanied by reduced tyrosine hydroxylase and dopamine levels in the striatum compared to the sham group. These biochemical changes were associated with functional motor and non-motor deficits as revealed by loss of motor coordination (rota rod test), impaired grip strength (beam walk test), enhanced rigidity (catalepsy scores), loss of memory (novel object recognition test) and depressive-like behaviour (forced swim test). However, oral treatment with NMJ-2 or NMJ-3, or valproic acid for 30 days significantly attenuated the PD-induced adverse changes in motor and non-motor functions by ameliorating the oxidative stress as well as inflammation, and restoring the dopamine levels in the striatum comparable to the valproic acid group. These results suggest that targeting HDACi could be a rational therapeutic strategy for the development of disease-modifying therapies for PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Rats , Animals , Mice , Parkinson Disease/drug therapy , Dopamine , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotection , Valproic Acid/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mice, Inbred C57BL
4.
J Biomol Struct Dyn ; 41(21): 11484-11497, 2023.
Article in English | MEDLINE | ID: mdl-36803674

ABSTRACT

Lichens are symbiotic organisms that have been traditionally used for treating different kinds of ailments. As there are only a few reports on the antiviral activity of lichens, we thought of evaluating the anti-Herpes simplex virus-1 (HSV-1) activity of methanolic extract of Roccella montagnei and their isolated compounds. Fractionation of crude methanolic extract of Roccella montagnei by column chromatography isolated two pure compounds. Antiviral activity was assessed using a CPE inhibition assay at non-cytotoxic concentrations on Vero cells. Molecular docking and dynamics studies were carried out against Herpes simplex type-1 thymidine kinase to understand the binding interactions of the isolated compounds with reference to acyclovir. Isolated compounds were characterized as methyl orsellinate and montagnetol by spectral methods. Methanolic extract of Roccella montagnei exhibited an EC50 value of 56.51 µg/ml, while the compounds methyl orsellinate and montagnetol offered EC50 values of 13.50 µg/ml and 37.52 µg/ml, respectively, against HSV-1 viral infection on Vero cell lines. The selectively index (SI) of montagnetol (10.93) was found to be higher when compared to that of methyl orsellinate (5.55), indicating its better anti-HSV-1 activity. The docking and dynamics studies showed montagnetol was stable throughout the 100 ns, having better interactions and docking scores with HSV-1 thymidine kinase than methyl orsellinate, as well as the standard. To understand the mechanism of montagnetol's anti-HSV-1 activity, more research is required, and this could lead to the discovery of new and effective antiviral agents.Communicated by Ramaswamy H. Sarma.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Lichens , Animals , Chlorocebus aethiops , Antiviral Agents/chemistry , Vero Cells , Lichens/chemistry , Molecular Docking Simulation , Thymidine Kinase/pharmacology , Thymidine Kinase/therapeutic use , Herpes Simplex/drug therapy , Plant Extracts/pharmacology
5.
Mol Syst Des Eng ; 7(6): 592-606, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36186547

ABSTRACT

Tuberculosis (TB) is an air-borne infectious disease and is the leading cause of death among all infectious diseases globally. The current treatment regimen for TB is overtly long and patient non-compliance often leads to drug resistant TB resulting in a need to develop new drugs that will act via novel mechanisms. In this research work, we selected Mycobacterium membrane protein large (MmpL3) as the drug target and indole-2-carboximide as our molecule of interest for further designing new molecules. A homology model was prepared for the Mycobacterium tuberculosis MmpL3 from the crystal structure of Mycobacterium smegmatis MmpL3. A series of indoles which are known to be MmpL3 inhibitors were docked in the prepared protein and the binding site properties were identified. Based on that, 10 molecules were designed and synthesized and their antitubercular activities evaluated. We identified four hits among which the highest potency candidate possessed a minimum inhibitory concentration (MIC) of 1.56 µM at 2-weeks. Finally, molecular dynamics simulation studies were done with 3b and a previously reported MmpL3 inhibitor to understand the intricacies of their binding in real time and to correlate the experimental findings with the simulation data.

6.
Ther Adv Drug Saf ; 12: 20420986211041277, 2021.
Article in English | MEDLINE | ID: mdl-34471515

ABSTRACT

INTRODUCTION: Tuberculosis is a major respiratory disease globally with a higher prevalence in Asian and African countries than rest of the world. With a larger population of tuberculosis patients anticipated to be co-infected with COVID-19 infection, an ongoing pandemic, identifying, preventing and managing drug-drug interactions is inevitable for maximizing patient benefits for the current repurposed COVID-19 and antitubercular drugs. METHODS: We assessed the potential drug-drug interactions between repurposed COVID-19 drugs and antitubercular drugs using the drug interaction checker of IBM Micromedex®. Extensive computational studies were performed at a molecular level to validate and understand the drug-drug interactions found from the Micromedex drug interaction checker database at a molecular level. The integrated knowledge derived from Micromedex and computational data was collated and curated for predicting potential drug-drug interactions between repurposed COVID-19 and antitubercular drugs. RESULTS: A total of 91 potential drug-drug interactions along with their severity and level of documentation were identified from Micromedex between repurposed COVID-19 drugs and antitubercular drugs. We identified 47 pharmacodynamic, 42 pharmacokinetic and 2 unknown DDIs. The majority of our molecular modelling results were in line with drug-drug interaction data obtained from the drug information software. QT prolongation was identified as the most common type of pharmacodynamic drug-drug interaction, whereas drug-drug interactions associated with cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) inhibition and induction were identified as the frequent pharmacokinetic drug-drug interactions. The results suggest antitubercular drugs, particularly rifampin and second-line agents, warrant high alert and monitoring while prescribing with the repurposed COVID-19 drugs. CONCLUSION: Predicting these potential drug-drug interactions, particularly related to CYP3A4, P-gp and the human Ether-à-go-go-Related Gene proteins, could be used in clinical settings for screening and management of drug-drug interactions for delivering safer chemotherapeutic tuberculosis and COVID-19 care. The current study provides an initial propulsion for further well-designed pharmacokinetic-pharmacodynamic-based drug-drug interaction studies. PLAIN LANGUAGE SUMMARY: Introduction:: Tuberculosis is a major respiratory disease globally with a higher prevalence in Asian and African countries than rest of the world. With a larger population of tuberculosis patients predicted to be infected with COVID-19 during this period, there is a higher risk for the occurrence of medication interactions between the medicines used for COVID-19 and tuberculosis. Hence, identifying and managing these interactions is vital to ensure the safety of patients undergoing COVID-19 and tuberculosis treatment simultaneously.Methods:: We studied the major medication interactions that could likely happen between the various medicines that are currently given for COVID-19 and tuberculosis treatment using the medication interaction checker of a drug information software (Micromedex®). In addition, thorough molecular modelling was done to confirm and understand the interactions found from the medication interaction checker database using specific docking software. Molecular docking is a method that predicts the preferred orientation of one medicine molecule to a second molecule, when bound to each other to form a stable complex. Knowledge of the preferred orientation may be used to determine the strength of association or binding affinity between two medicines using scoring functions to determine the extent of the interactions between medicines. The combined knowledge from Micromedex and molecular modelling data was used to properly predict the potential medicine interactions between currently used COVID-19 and antitubercular medicines.Results:: We found a total of 91 medication interactions from Micromedex. Majority of our molecular modelling findings matched with the interaction information obtained from the drug information software. QT prolongation, an abnormal heartbeat, was identified as one of the most common interactions. Our findings suggest that antitubercular medicines, mainly rifampin and second-line agents, suggest high alert and scrutiny while prescribing with the repurposed COVID-19 medicines.Conclusion:: Our current study highlights the need for further well-designed studies confirming the current information for recommending safe prescribing in patients with both infections.

7.
Med Drug Discov ; 10: 100085, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33846702

ABSTRACT

Recently, the pandemic outbreak of a novel coronavirus, officially termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), indicated by a pulmonary infection in humans, has become one of the most significant challenges for public health. In the current fight against coronavirus disease-2019, the medical and health authorities across the world focused on quick diagnosis and isolation of patients; meanwhile, researchers worldwide are exploring the possibility of developing vaccines and novel therapeutic options to combat this deadly disease. Recently, based on various small clinical observations, uncontrolled case studies and previously reported antiviral activity against SARS-CoV-1 chloroquine (CQ) and hydroxychloroquine (HCQ) have attracted exceptional consideration as possible therapeutic agents against SARS-CoV-2. However, there are reports on little to no effect of CQ or HCQ against SARS-CoV-2, and many reports have raised concerns about their cardiac toxicity. Here, in this review, we examine the chemistry, molecular mechanism, and pharmacology, including the current scenario and future prospects of CQ or HCQ in the treatment of SARS-CoV-2.

8.
Life Sci ; 258: 118202, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32758625

ABSTRACT

Pandemic coronavirus disease-2019, commonly known as COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious disease with a high mortality rate. Various comorbidities and their associated symptoms accompany SARS-CoV-2 infection. Among the various comorbidities like hypertension, cardiovascular disease and chronic obstructive pulmonary disease, diabetes considered as one of the critical comorbidity, which could affect the survival of infected patients. The severity of COVID-19 disease intensifies in patients with elevated glucose level probably via amplified pro-inflammatory cytokine response, poor innate immunity and downregulated angiotensin-converting enzyme 2. Thus, the use of ACE inhibitors or angiotensin receptor blockers could worsen the glucose level in patients suffering from novel coronavirus infection. It also observed that the direct ß-cell damage caused by virus, hypokalemia and cytokine and fetuin-A mediated increase in insulin resistance could also deteriorate the diabetic condition in COVID-19 patients. This review highlights the current scenario of coronavirus disease in pre-existing diabetic patients, epidemiology, molecular perception, investigations, treatment and management of COVID-19 disease in patients with pre-existing diabetes. Along with this, we have also discussed unexplored therapies and future perspectives for coronavirus infection.


Subject(s)
Coronavirus Infections/epidemiology , Diabetes Mellitus/epidemiology , Pneumonia, Viral/epidemiology , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , COVID-19 , Comorbidity , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Disease Management , Humans , Hypoglycemic Agents/therapeutic use , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Polymorphism, Genetic , SARS-CoV-2
9.
J Med Chem ; 61(11): 4993-5008, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29763304

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder that has a higher prevalence and incidence in people older than 60 years. The need for improved AD therapies is unmet as the current therapies are symptomatic with modest efficacy. Partial agonists of the 5-HT4 receptor (5-HT4R) offer both symptomatic and disease-modifying treatments as they shift amyloid-precursor-protein (APP) processing from the amyloidogenic pathway to the nonamyloidogenic pathway by activating the α-secretase enzyme. In addition, they also offer symptomatic treatment by increasing levels of the neurotransmitter acetylcholine in the brain. Because of this fascinating dual mechanism of action, several chemical scaffolds having 5-HT4R pharmacophores were designed and evaluated. Most of the synthesized compounds showed potent in vitro affinities and in vivo efficacies. Upon analysis of focused structure-activity relationships, compound 4o was identified as a potent 5-HT4R partial agonist with favorable ADME properties and good in vivo efficacy. GR-125487, a selective 5-HT4R antagonist, attenuated the activity of compound 4o in the novel-object-recognition-test cognition model.


Subject(s)
Amides/chemistry , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/chemistry , Serotonin 5-HT4 Receptor Agonists/pharmacology , Animals , Chemistry Techniques, Synthetic , Drug Evaluation, Preclinical , Humans , Male , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Rats , Rats, Wistar , Serotonin 5-HT4 Receptor Agonists/pharmacokinetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...