Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hemasphere ; 7(4): e864, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37008165

ABSTRACT

Lymphoma is the most common hematological malignancy and is among the 10 most prevalent cancers worldwide. Although survival has been improved by modern immunochemotherapeutic regimens, there remains a significant need for novel targeted agents to treat both B-cell and T-cell malignancies. Cytidine triphosphate synthase 1 (CTPS1), which catalyzes the rate-limiting step in pyrimidine synthesis, plays an essential and nonredundant role in B-cell and T-cell proliferation but is complemented by the homologous CTPS2 isoform outside the hemopoietic system. This report describes the identification and characterization of CTPS1 as a novel target in B- and T-cell cancers. A series of small molecules have been developed which show potent and highly selective inhibition of CTPS1. Site-directed mutagenesis studies identified the adenosine triphosphate pocket of CTPS1 as the binding site for this small molecule series. In preclinical studies, a potent and highly selective small molecule inhibitor of CTPS1 blocked the in vitro proliferation of human neoplastic cells, showing the highest potency against lymphoid neoplasms. Importantly, pharmacological CTPS1 inhibition induced cell death by apoptosis in the majority of lymphoid cell lines tested, thus demonstrating a cytotoxic mechanism of action. Selective CTPS1 inhibition also inhibited the growth of neoplastic human B- and T- cells in vivo. These findings identify CTPS1 as a novel therapeutic target in lymphoid malignancy. A compound from this series is in phase 1/2 clinical studies for the treatment of relapsed/refractory B- and T-cell lymphoma (NCT05463263).

2.
J Med Chem ; 65(24): 16640-16650, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36449304

ABSTRACT

Herein, we report the discovery of a first-in-class chemotype 2-(alkylsulfonamido)thiazol-4-yl)acetamides that act as pan-selective inhibitors of cytidine 5'-triphosphate synthetase (CTPS1/2), critical enzymes in the de novo pyrimidine synthesis pathway. Weak inhibitors identified from a high-throughput screening of 240K compounds have been optimized to a potent, orally active agent, compound 27, which has shown significant pharmacological responses at 10 mg/kg dose BID in a well-established animal model of inflammation.


Subject(s)
Carbon-Nitrogen Ligases , Enzyme Inhibitors , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Carbon-Nitrogen Ligases/metabolism , Cell Proliferation , High-Throughput Screening Assays
3.
Bioorg Med Chem Lett ; 25(24): 5792-6, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26531152

ABSTRACT

Herein we describe a series of tetrahydrobenzotriazoles as novel, potent metabotropic glutamate receptor subtype 5 (mGlu5) positive allosteric modulators (PAMs). Exploration of the SAR surrounding the tetrahydrobenzotriazole core ultimately led to the identification of 29 as a potent mGlu5 PAM with a low maximal glutamate potency fold shift, acceptable in vitro DMPK parameters and in vivo PK profile and efficacy in the rat novel object recognition (NOR) assay. As a result 29 was identified as a suitable compound for progression to in vivo safety evaluation.


Subject(s)
Antipsychotic Agents/chemistry , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Triazoles/chemistry , Allosteric Regulation/drug effects , Animals , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Cognition/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Half-Life , Humans , Microsomes/metabolism , Rats , Receptor, Metabotropic Glutamate 5/metabolism , Structure-Activity Relationship , Triazoles/metabolism , Triazoles/pharmacology
4.
Org Biomol Chem ; 4(19): 3598-610, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-16990935

ABSTRACT

Pantothenate synthetase catalyses the ATP-dependent condensation of D-pantoate and beta-alanine to form pantothenate. Ten analogues of the reaction intermediate pantoyl adenylate, in which the phosphodiester is replaced by either an ester or sulfamoyl group, were designed as potential inhibitors of the enzyme. The esters were all modest competitive inhibitors, the sulfamoyls were more potent, consistent with their closer structural similarity to the pantoyl adenylate intermediate.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Peptide Synthases/antagonists & inhibitors , Adenosine Triphosphate/pharmacology , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Esters/chemistry , Kinetics , Models, Molecular , Peptide Synthases/chemistry , Protein Structure, Secondary , Sulfonamides/chemistry , Temperature
5.
Langmuir ; 22(3): 887-92, 2006 Jan 31.
Article in English | MEDLINE | ID: mdl-16430243

ABSTRACT

In this letter, we show that electrostatic immobilization provides a simple but effective approach for the immobilization and orientation of carbonic anhydrase onto charged surfaces. The enzyme is oriented differently on oppositely charged surfaces, with the majority of active sites facing upward on a positively charged surface and downward on a negatively charged surface. An array of negatively charged microscale surface patterns within a positively charged background was prepared by microcontact printing and used as the substrate to immobilize the enzymes. This enabled the probing of the enzyme orientations on the two differently charged surface regions by force spectroscopy with the same atomic force microscopy (AFM) probe modified with a thiolated sulfonamide inhibitor. The unbinding forces between the inhibitor tip and the enzyme immobilized on the two differently charged surfaces were measured. Two control experiments, blocking of the enzyme active site with a competitive inhibitor and removal of the zinc ion from the enzyme catalytic center, were employed to distinguish between specific and nonspecific interactions and to further verify the differences in enzyme orientation. Autocorrelation analysis of the force histograms was carried out to evaluate the specific single enzyme-inhibitor interaction force.


Subject(s)
Carbonic Anhydrase II/chemistry , Microscopy, Atomic Force/methods , Static Electricity , Surface Properties , Animals , Binding Sites , Cattle , Ligands
6.
Structure ; 11(8): 985-96, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12906829

ABSTRACT

We report the crystal structure of E. coli ketopantoate hydroxymethyltransferase (KPHMT) at 1.9 A resolution, in complex with its product, ketopantoate. KPHMT catalyzes the first step in the biosynthesis of pantothenate (vitamin B(5)), the precursor of coenzyme A and the acyl carrier protein cofactor. The structure of the decameric enzyme was solved by multiwavelength anomalous dispersion to locate 160 selenomethionine sites and phase 560 kDa of protein, making it the largest structure solved by this approach. KPHMT adopts the (betaalpha)(8) barrel fold and is a member of the phosphoenolpyruvate/pyruvate superfamily. The active site contains a ketopantoate bidentately coordinated to Mg(2+). Similar binding is likely for the substrate, alpha-ketoisovalerate, orienting the C3 for deprotonation.


Subject(s)
Escherichia coli/enzymology , Hydroxymethyl and Formyl Transferases/chemistry , Hydroxymethyl and Formyl Transferases/metabolism , Magnesium/metabolism , Selenomethionine/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Dimerization , Escherichia coli/genetics , Gene Expression , Hydroxymethyl and Formyl Transferases/genetics , Models, Molecular , Molecular Sequence Data , Molecular Structure , Molecular Weight , Pantothenic Acid/biosynthesis , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrum Analysis, Raman , Static Electricity , Substrate Specificity
7.
J Comput Aided Mol Des ; 16(12): 855-69, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12825619

ABSTRACT

Many proteins undergo small side chain or even backbone movements on binding of different ligands into the same protein structure. This is known as induced fit and is potentially problematic for virtual screening of databases against protein targets. In this report we investigate the limits of the rigid protein approximation used by the docking program, GOLD, through cross-docking using protein structures of influenza neuraminidase. Neuraminidase is known to exhibit small but significant induced fit effects on ligand binding. Some neuraminidase crystal structures caused concern due to the bound ligand conformation and GOLD performed poorly on these complexes. A 'clean' set, which contained unique, unambiguous complexes, was defined. For this set, the lowest energy structure was correctly docked (i.e. RMSD < 1.5 A away from the crystal reference structure) in 84% of proteins, and the most promiscuous protein (1mwe) was able to dock all 15 ligands accurately including those that normally required an induced fit movement. This is considerably better than the 70% success rate seen with GOLD against general validation sets. Inclusion of specific water molecules involved in water-mediated hydrogen bonds did not significantly improve the docking performance for ligands that formed water-mediated contacts but it did prevent docking of ligands that displaced these waters. Our data supports the use of a single protein structure for virtual screening with GOLD in some applications involving induced fit effects, although care must be taken to identify the protein structure that performs best against a wide variety of ligands. The performance of GOLD was significantly better than the GOLD implementation of ChemScore and the reasons for this are discussed. Overall, GOLD has shown itself to be an extremely good, robust docking program for this system.


Subject(s)
Influenza A virus/enzymology , Influenza B virus/enzymology , Neuraminidase/chemistry , Algorithms , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , Databases, Protein , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydrogen Bonding , In Vitro Techniques , Ligands , Microbial Sensitivity Tests , Models, Molecular , Neuraminidase/antagonists & inhibitors , Protein Conformation , Static Electricity , Thermodynamics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...