Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Tissue Res ; 393(3): 577-593, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37335379

ABSTRACT

The androgen pathway via androgen receptor (AR) has received the most attention for development of male reproductive tracts. The estrogen pathway through estrogen receptor (ESR1) is also a major contributor to rete testis and efferent duct formation, but the role of progesterone via progesterone receptor (PGR) has largely been overlooked. Expression patterns of these receptors in the mesonephric tubules (MTs) and Wolffian duct (WD), which differentiate into the efferent ductules and epididymis, respectively, remain unclear because of the difficulty in distinguishing each region of the tracts. This study investigated AR, ESR1, and PGR expressions in the murine mesonephros using three-dimensional (3-D) reconstruction. The receptors were localized in serial paraffin sections of the mouse testis and mesonephros by immunohistochemistry on embryonic days (E) 12.5, 15.5, and 18.5. Specific regions of the developing MTs and WD were determined by 3-D reconstruction using Amira software. AR was found first in the specific portion of the MTs near the MT-rete junction at E12.5, and the epithelial expression showed increasing strength from cranial to the caudal regions. Epithelial expression of ESR1 was found in the cranial WD and MTs near the WD first at E15.5. PGR was weakly positive only in the MTs and cranial WD starting on E15.5. This 3-D analysis suggests that gonadal androgen acts first on the MTs near the MT-rete junction but that estrogen is the first to influence MTs near the WD, while potential PGR activity is delayed and limited to the epithelium.


Subject(s)
Androgens , Mesonephros , Male , Animals , Mice , Epididymis , Receptors, Estrogen , Receptors, Androgen , Gonadal Steroid Hormones , Estrogens
2.
Biomedicines ; 10(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36359335

ABSTRACT

BACKGROUND: To evaluate tissue regeneration of the urinary bladder after the implantation of a decellularized vein sown with autologous adipose-derived mesenchymal stem cells (ASC) on luminal surfaces. METHODS: New Zealand rabbits (n = 10) were distributed in two groups: Group Bioscaffold alone (G1)-decellularized vena cava (1 cm2) was implanted, and Group Bioscaffold plus ACSs (G2)-decellularized vena cava (1 cm2) containing ASCs were implanted. ASCs were expanded, characterized, and maintained for one week in culture with a decellularized vein scaffold. The implants were performed under general anesthesia using a continuous suture pattern. Afterward, 21 d (day) specimens were collected and analyzed by hematoxylin and eosin (HE) histology and scanning electron microscopy (SEM). RESULTS: The integrity of the urinary bladder was maintained in both groups. A superior regenerative process was observed in the G2 group, compared to the G1 group. We observed a greater urothelial epithelialization and maturity of the mucosa and submucosa fibroblasts. Furthermore, SEM demonstrated a notable amount of urothelial villus in the G2 group. CONCLUSION: Decellularized vena cava scaffolds were able to maintain the integrity of the urinary bladder in the proposed model. In addition, ASCs accelerated the regenerative process development, observed primarily by the new urothelial epithelization and the maturity of mucosa and submucosa fibroblasts.

3.
Biochem Pharmacol ; 197: 114902, 2022 03.
Article in English | MEDLINE | ID: mdl-34968493

ABSTRACT

Per- and polyfluorinated alkyl substances (PFAS) are a large family of widely used synthetic chemicals that are environmentally and biologically persistent and present in most individuals. Chronic PFAS exposure have been linked to increased prostate cancer risk in occupational settings, however, underlying mechanisms have not been interrogated. Herein we examined exposure of normal human prostate stem-progenitor cells (SPCs) to 10 nM PFOA or PFOS using serial passage of prostasphere cultures. Exposure to either PFAS for 3-4 weeks increased spheroid numbers and size indicative of elevated stem cell self-renewal and progenitor cell proliferation. Transcriptome analysis using single-cell RNA sequencing (scRNA-seq) showed 1) SPC expression of PPARs and RXRs able to mediate PFAS effects, 2) the emergence of a new cell cluster of aberrantly differentiated luminal progenitor cells upon PFOS/PFOA exposure, and 3) enrichment of cancer-associated signaling pathways. Metabolomic analysis of PFAS-exposed prostaspheres revealed increased glycolytic pathways including the Warburg effect as well as strong enrichment of serine and glycine metabolism which may promote a pre-malignant SPC fate. Finally, growth of in vivo xenografts of tumorigenic RWPE-2 human prostate cells, shown to contain cancer stem-like cells, was markedly enhanced by daily PFOS feeding to nude mice hosts. Together, these findings are the first to identify human prostate SPCs as direct PFAS targets with resultant reprogrammed transcriptomes and metabolomes that augment a preneoplastic state and may contribute to an elevated prostate cancer risk with chronic exposures.


Subject(s)
Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Prostate/drug effects , Prostate/pathology , Stem Cells/drug effects , Stem Cells/pathology , Animals , Humans , Male , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Xenograft Model Antitumor Assays/methods , Young Adult
4.
Andrology ; 10(2): 367-376, 2022 02.
Article in English | MEDLINE | ID: mdl-34542939

ABSTRACT

BACKGROUND: Polyphenylene carboxymethylene (PPCM) sodium salt is a promising multipurpose technology for prevention of both sexually transmitted infections (STIs) and pregnancy. In preclinical studies, PPCM has demonstrated significant (1) antimicrobial activity against several important viral and bacterial pathogens and (2) contraceptive activity associated with premature acrosome loss. OBJECTIVE: To further evaluate a vaginal antimicrobial compound as a contraceptive agent in preclinical studies utilizing a repurposed hyaluronan binding assay (HBA). MATERIALS AND METHODS: Semen samples containing either neat semen or washed spermatozoa were treated with increasing concentrations of PPCM or calcium ionophore A23187 (positive control). Sperm inactivation was measured by two methods: (1) double acrosome staining (AS), and (2) a hyaluronan binding assay (HBA® ). Percentage of inactivated sperm was compared between untreated control sperm and those treated with PPCM or A23187. RESULTS: PPCM had a significant (p < 0.05) and dose-dependent effect on sperm inactivation in both assays, with HBA detecting a higher proportion of inactivated sperm than AS. PPCM did not affect sperm motility and exhibited equivalent responses in the neat and washed samples. DISCUSSION: Both HBA and AS confirmed that spermatozoa were rapidly inactivated at PPCM concentrations likely present in the vagina under actual use conditions and in a time-frame comparable to in vivo migration of spermatozoa out of seminal plasma into cervical mucus. CONCLUSION: PPCM vaginal gel may provide contraceptive protection as well as help with STI prevention. HBA may be a sensitive and much needed biomarker for sperm activity in future contraceptive development.


Subject(s)
Acrosome/drug effects , Contraceptive Agents/pharmacology , Polymers/pharmacology , Spermatozoa/drug effects , Vaginal Creams, Foams, and Jellies/pharmacology , Calcimycin/pharmacology , Female , Humans , Hyaluronic Acid , Male , Pregnancy , Semen/drug effects , Sperm Motility/drug effects
5.
Am J Clin Exp Urol ; 10(6): 377-389, 2022.
Article in English | MEDLINE | ID: mdl-36636689

ABSTRACT

Cancer stem cells (CSCs) are resistant to conventional cancer therapies, permitting the repopulation of new tumor growth and driving disease progression. Models for testing prostate CSC-propagated tumor growth are presently limited yet necessary for therapeutic advancement. Utilizing the congenic nontumorigenic NRP152 and tumorigenic NRP154 rat prostate epithelial cell lines, the present study investigated the self-renewal, differentiation, and regenerative abilities of prostate stem/progenitor cells and developed a CSC-based PCa model. NRP154 cells expressed reduced levels of tumor suppressor caveolin-1 and increased p-Src as compared to NRP152 cells. Gene knockdown of caveolin-1 in NRP152 cells upregulated p-Src, implicating their role as potential oncogenic mediators in NRP154 cells. A FACS-based Hoechst exclusion assay revealed a side population of stem-like cells (0.1%) in both NRP152 and NRP154 cell lines. Using a 3D Matrigel culture system, stem cells from both cell lines established prostaspheres at a 0.1% efficiency through asymmetric self-renewal and rapid proliferation of daughter progenitor cells. Spheres derived from both cell lines contained CD117+ and CD133+ stem cell subpopulations and basal progenitor cell subpopulations (p63+ and CK5+) but were negative for luminal cell CK8 markers at day 7. While some NRP152 sphere cells were androgen receptor (AR) positive at this timepoint, NRP154 cells were AR- up to 30 days of 3D culture. The regenerative capacity of the stem/progenitor cells was demonstrated by in vivo tissue recombination with urogenital sinus mesenchyme (UGM) and renal grafting in nude mice. While stem/progenitor cells from NRP152 spheroids generated normal prostate structures, CSCs and progeny cells from NRP154 tumoroids generated tumor tissues that were characterized by immunohistochemistry. Atypical hyperplasia and prostatic intraepithelial neoplasia (PIN) lesions progressed to adenocarcinoma with kidney invasion over 4 months. This provides clear evidence that prostate CSCs can repopulate new tumor growth outside the prostate gland that rapidly progresses to poorly differentiated adenocarcinoma with invasive capabilities. The dual in vitro/in vivo CSC model system presented herein provides a novel platform for screening therapeutic agents that target prostate CSCs for effective combined treatment protocols for local and advanced disease stages.

6.
Biomolecules ; 11(12)2021 12 04.
Article in English | MEDLINE | ID: mdl-34944473

ABSTRACT

The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate myosin light chain kinase (MLCK), and MLCK regulates myosin light chain phosphorylation (MLC-P), which is critical for cell fate, including cell proliferation, differentiation, and apoptosis. However, the roles and crosstalk of the MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis have not been examined. In the present study, we used numerical and image analysis to characterize lobe-specific rat prostatic branching during postnatal organ culture and investigated the roles of FGF10-MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis. Prostates exhibited distinctive lobe-specific growth and branching patterns in the ventral (VP) and lateral (LP) lobes, while exogenous FGF10 treatment shifted LP branching towards a VP branching pattern. Treatment with inhibitors of MEK1/2, Rho, Rho kinase, or MLCK significantly inhibited VP growth and blocked branching morphogenesis, further supporting critical roles for MEK/ERK and Rho/Rho kinase signaling pathways in prostatic growth and branching during development. We propose that MLCK-regulated MLC-P may be a central downstream target of both signaling pathways in regulating prostate morphogenesis.


Subject(s)
Fibroblast Growth Factor 10/metabolism , Prostate/growth & development , rho-Associated Kinases/metabolism , Animals , Cell Differentiation , Cell Proliferation , Gene Expression Regulation, Developmental , MAP Kinase Signaling System , Male , Morphogenesis , Organ Culture Techniques , Prostate/metabolism , Rats
7.
J Vis Exp ; (154)2019 12 13.
Article in English | MEDLINE | ID: mdl-31885380

ABSTRACT

Despite advances in adult stem cell research, identification and isolation of stem cells from tissue specimens remains a major challenge. While resident stem cells are relatively quiescent with niche restraints in adult tissues, they enter the cell cycle in anchor-free three-dimensional (3D) culture and undergo both symmetric and asymmetric cell division, giving rise to both stem and progenitor cells. The latter proliferate rapidly and are the major cell population at various stages of lineage commitment, forming heterogeneous spheroids. Using primary normal human prostate epithelial cells (HPrEC), a spheroid-based, label-retention assay was developed that permits the identification and functional isolation of the spheroid-initiating stem cells at a single cell resolution. HPrEC or cell lines are two-dimensionally (2D) cultured with BrdU for 10 days to permit its incorporation into the DNA of all dividing cells, including self-renewing stem cells. Wash out commences upon transfer to the 3D culture for 5 days, during which stem cells self-renew through asymmetric division and initiate spheroid formation. While relatively quiescent daughter stem cells retain BrdU-labeled parental DNA, the daughter progenitors rapidly proliferate, losing the BrdU label. BrdU can be substituted with CFSE or Far Red pro-dyes, which permit live stem cell isolation by FACS. Stem cell characteristics are confirmed by in vitro spheroid formation, in vivo tissue regeneration assays, and by documenting their symmetric/asymmetric cell divisions. The isolated label-retaining stem cells can be rigorously interrogated by downstream molecular and biologic studies, including RNA-seq, ChIP-seq, single cell capture, metabolic activity, proteome profiling, immunocytochemistry, organoid formation, and in vivo tissue regeneration. Importantly, this marker-free functional stem cell isolation approach identifies stem-like cells from fresh cancer specimens and cancer cell lines from multiple organs, suggesting wide applicability. It can be used to identify cancer stem-like cell biomarkers, screen pharmaceuticals targeting cancer stem-like cells, and discover novel therapeutic targets in cancers.


Subject(s)
Cell Separation/methods , Spheroids, Cellular , Stem Cells/cytology , Bromodeoxyuridine , Cell Count , Cell Cycle/physiology , Cell Division , Cells, Cultured , Flow Cytometry , Humans , Male , Prostate/cytology
8.
Environ Health Perspect ; 126(11): 117001, 2018 11.
Article in English | MEDLINE | ID: mdl-30387366

ABSTRACT

BACKGROUND: Previous work determined that early life exposure to low-dose Bisphenol A (BPA) increased rat prostate cancer risk with aging. Herein, we report on prostate-specific results from CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity), which aims to resolve uncertainties regarding BPA toxicity. OBJECTIVES: We sought to a) reassess whether a range of BPA exposures drives prostate pathology and/or alters prostatic susceptibility to hormonal carcinogenesis, and b) test whether chronic low-dose BPA targets prostate epithelial stem and progenitor cells. METHODS: Sprague-Dawley rats were gavaged daily with vehicle, ethinyl estradiol (EE) or [Formula: see text] BPA/kg-BW during development or chronically, and prostate pathology was assessed at one year. One developmentally exposed cohort was given testosterone plus estradiol ([Formula: see text]) implants at day 90 to promote carcinogenesis with aging. Epithelial stem and progenitor cells were isolated by prostasphere (PS) culture from dorsolateral prostates (DLP) of rats continuously exposed for six months to [Formula: see text] BPA/kg-BW. Gene expression was analyzed by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: Exposure to BPA alone at any dose did not drive prostate pathology. However, rats treated with EE, 2.5, 250, or [Formula: see text] BPA/kg-BW plus [Formula: see text] showed greater severity of lateral prostate intraepithelial neoplasia (PIN), and DLP ductal adenocarcinoma multiplicity was markedly elevated in tumor-bearing rats exposed to [Formula: see text]-BW. DLP stem cells, assessed by PS number, doubled with chronic EE and [Formula: see text] exposures. PS size, reflecting progenitor cell proliferation, was greater at 25 and [Formula: see text] BPA doses, which also shifted lineage commitment toward basal progenitors while reducing luminal progenitor cells. CONCLUSIONS: Together, these results confirm and extend previous evidence using a rat model and human prostate epithelial cells that low-dose BPA augments prostate cancer susceptibility and alters adult prostate stem cell homeostasis. Therefore, we propose that BPA exposures may contribute to the increased carcinogenic risk in humans that occurs with aging. https://doi.org/10.1289/EHP3953.


Subject(s)
Benzhydryl Compounds/toxicity , Phenols/toxicity , Prostatic Neoplasms/chemically induced , Stem Cells/drug effects , Adenocarcinoma/chemically induced , Aging , Animals , Estradiol/pharmacology , Gene Expression , Homeostasis , Male , Prostate/cytology , Prostatic Intraepithelial Neoplasia/chemically induced , Rats, Sprague-Dawley , Testosterone/pharmacology
9.
Environ Health Perspect ; 125(7): 077007, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28728135

ABSTRACT

BACKGROUND: Previous studies have uncovered heightened prostatic susceptibility to hormone-induced neoplasia from early-life exposure to low-dose bisphenol A (BPA). However, significant data gaps remain that are essential to address for biological relevance and necessary risk assessment. OBJECTIVES: A complete BPA dose-response analysis of prostate lesions across multiple prostatic lobes was conducted that included internal BPA dosimetry, progression to adenocarcinoma with aging and mechanistic connections to epigenetically reprogramed genes. METHODS: Male neonatal Sprague-Dawley rats were briefly exposed to 0.1 to 5,000 µg BPA/kg BW on postnatal days (PND) 1, 3, and 5. Individual prostate lobes plus periurethral prostatic ducts were evaluated at 7 mo or 1 y of age without or with adult testosterone plus estradiol (T+E) to promote carcinogenesis. DNA methylation of five genes was quantified by bisulfite genomic sequencing in d-200 dorsal prostates across BPA doses. Serum free-BPA and BPA-glucuronide were quantitated in sera of individual PND 3 pups collected 1 hr postexposure utilizing ultra-high-pressure tandem mass spectrometry (UHPLC-MS-MS). RESULTS: The lowest BPA dose initiated maximal hormonal carcinogenesis in lateral prostates despite undetectable free BPA 1 hr postexposure. Further, prostatic intraepithelial neoplasia (PIN) progressed to carcinoma in rats given neonatal low-dose BPA with adult T+E but not in rats given adult T+E alone. The dorsal and ventral lobes and periurethral prostatic ducts exhibited a nonmonotonic dose response with peak PIN, proliferation and apoptotic values at 10­100 µg/kg BW. This was paralleled by nonmonotonic and dose-specific DNA hypomethylation of genes that confer carcinogenic risk, with greatest hypomethylation at the lowest BPA doses. CONCLUSIONS: Developmental BPA exposures heighten prostate cancer susceptibility in a complex dose- and lobe-specific manner. Importantly, elevated carcinogenic risk is found at doses that yield undetectable serum free BPA. Dose-specific epigenetic modifications of selected genes provide a mechanistic framework that may connect early-life BPA to later-life predisposition to prostate carcinogenesis. https://doi.org/10.1289/EHP1050.


Subject(s)
Aging , Benzhydryl Compounds/toxicity , DNA Methylation , Environmental Pollutants/toxicity , Phenols/toxicity , Prostatic Neoplasms/epidemiology , Animals , Benzhydryl Compounds/blood , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Environmental Pollutants/blood , Incidence , Male , Phenols/blood , Prostatic Neoplasms/chemically induced , Rats/growth & development , Rats/physiology , Rats, Sprague-Dawley , Tandem Mass Spectrometry
10.
J Steroid Biochem Mol Biol ; 143: 105-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24508597

ABSTRACT

Sulfatase enzymes remove sulfate groups from sulfated steroid hormones, including estrone-sulfate and dehydroepiandrosterone-sulfate, and from sulfated glycosaminoglycans (GAGs), including chondroitin sulfates and heparan sulfate. The enzymes N-acetylgalactosamine-4-sulfatase (arylsulfatase B; ARSB) and N-acetylgalactosamine-6-sulfatase (GALNS), which remove sulfate groups from the sulfated GAGs chondroitin 4-sulfate (C4S) and chondroitin 6-sulfate, respectively, have not been studied in prostate development previously. In this report, the endogenous variation and the impact of exogenous estradiol benzoate on the immunohistochemistry and activity of ARSB and GALNS in post-natal (days 1-30) ventral rat prostate are presented, as well as measurements of steroid sulfatase activity (STS), C4S, total sulfated GAGs, and versican, an extracellular matrix proteoglycan with chondroitin sulfate attachments on days 5 and 30. Findings demonstrate distinct and reciprocal localization of ARSB and GALNS, with ARSB predominant in the stroma and GALNS predominant in the epithelium. Control ARSB activity increased significantly between days 5 and 30, but following estrogen exposure (estradiol benzoate 25 µg in 25 µl sesame oil subcutaneously on days 1, 3, and 5), activity was reduced and the observed increase on day 30 was inhibited. However, estrogen treatment did not inhibit the increase in GALNS activity between days 5 and 30, and reduced STS activity by 50% on both days 5 and 30 compared to vehicle control. Sulfated GAGs, C4S, and the extracellular matrix proteoglycan versican declined between days 5 and 30 in the control, but these declines were inhibited following estrogen. Study findings indicate distinct variation in expression and activity of sulfatases, sulfated GAGs, C4S, and versican in the process of normal prostate development, and disruption of these events by exogenous estrogen.


Subject(s)
Chondroitinsulfatases/metabolism , Estrogens/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , N-Acetylgalactosamine-4-Sulfatase/metabolism , Prostate/enzymology , Steryl-Sulfatase/metabolism , Animals , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Glycosaminoglycans/metabolism , Immunoenzyme Techniques , Immunoprecipitation , Male , Prostate/cytology , Prostate/drug effects , Rats , Rats, Sprague-Dawley , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/enzymology
11.
Endocrinology ; 153(1): 42-55, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22109888

ABSTRACT

Evidence supporting an early origin of prostate cancer is growing. We demonstrated previously that brief exposure of neonatal rats to estradiol or bisphenol A elevated their risk of developing precancerous lesions in the prostate upon androgen-supported treatment with estradiol as adults. Epigenetic reprogramming may be a mechanism underlying this inductive event in early life, because we observed overexpression of phosphodiesterase 4D variant 4 (Pde4d4) through induction of hypomethylation of its promoter. This epigenetic mark was invisible in early life (postnatal d 10), becoming apparent only after sexual maturation. Here, we asked whether other estrogen-reprogrammable epigenetic marks have similar or different patterns in gene methylation changes throughout life. We found that hypomethylation of the promoter of nucleosome binding protein-1 (Nsbp1), unlike Pde4d4, is an early and permanent epigenetic mark of neonatal exposure to estradiol/bisphenol A that persists throughout life, unaffected by events during adulthood. In contrast, hippocalcin-like 1 (Hpcal1) is a highly plastic epigenetic mark whose hypermethylation depends on both type of early-life exposure and adult-life events. Four of the eight genes involved in DNA methylation/demethylation showed early and persistent overexpression that was not a function of DNA methylation at their promoters, including genes encoding de novo DNA methyltransferases (Dnmt3a/b) and methyl-CpG binding domain proteins (Mbd2/4) that have demethylating activities. Their lifelong aberrant expression implicates them in early-life reprogramming and prostate carcinogenesis during adulthood. We speculate that the distinctly different fate of early-life epigenetic marks during adulthood reflects the complex nature of lifelong editing of early-life epigenetic reprogramming.


Subject(s)
Calcium-Binding Proteins/genetics , Estradiol/administration & dosage , Estradiol/toxicity , HMGN Proteins/genetics , Nerve Tissue Proteins/genetics , Phenols/administration & dosage , Phenols/toxicity , Prostate/drug effects , Prostate/metabolism , Animals , Animals, Newborn , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Base Sequence , Benzhydryl Compounds , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/drug effects , DNA Methyltransferase 3A , DNA Primers/genetics , DNA-Binding Proteins/genetics , Decitabine , Gene Expression/drug effects , HMGN Proteins/antagonists & inhibitors , Male , Promoter Regions, Genetic/drug effects , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , DNA Methyltransferase 3B
12.
Reprod Toxicol ; 31(1): 1-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20887781

ABSTRACT

The present study examines BPA pharmacokinetics in neonatal rats following s.c. injection or oral delivery of 10 µg BPA/kg BW and compares susceptibility to estrogen-induced prostate intraepithelial neoplasia (PIN) following either exposure route. Serum BPA in PND3 rats was measured using HPLC-MS-MS. Free and total BPA at C(max) were 1.77 and 2.0 ng/ml, respectively following injection and 0.26 and 1.02 ng/ml, respectively following oral exposure. The AUC(0-2) for free and total BPA was 4.1-fold and 1.8-fold greater, respectively, in s.c. vs. oral delivery. While exposure route affected BPA metabolism, internal dosimetry following s.c. injection of 10 µg BPA/kg BW is similar to BPA levels observed in humans. Prostates from aged rats given s.c. or oral BPA neonatally and T+E implants as adults exhibited nearly identical, heightened susceptibility to PIN incidence and score as compared to neonatal oil-controls. These findings on prostate health are directly relevant to humans at current BPA exposure levels.


Subject(s)
Estrogens, Non-Steroidal/pharmacokinetics , Estrogens, Non-Steroidal/toxicity , Phenols/pharmacokinetics , Phenols/toxicity , Prostatic Intraepithelial Neoplasia/chemically induced , Prostatic Neoplasms/chemically induced , Administration, Oral , Animals , Animals, Newborn , Benzhydryl Compounds , Estrogens, Non-Steroidal/blood , Injections, Subcutaneous , Male , Phenols/blood , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Rats , Rats, Sprague-Dawley
13.
Dev Biol ; 328(2): 188-99, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19389372

ABSTRACT

The Wnt genes encode a large family of secreted glycoproteins that play important roles in controlling tissue patterning, cell fate and proliferation during development. Currently, little is known regarding the role(s) of Wnt genes during prostate gland development. The present study examines the role of the noncanonical Wnt5a during prostate gland development in rat and murine models. In the rat prostate, Wnt5a mRNA is expressed by distal mesenchyme during the budding stage and localizes to periductal mesenchymal cells with an increasing proximal-to-distal gradient during branching morphogenesis. Wnt5a protein is secreted and localizes to periductal stroma, extracellular matrix and epithelial cells in the distal ducts. While Wnt5a expression is high during active morphogenesis in all prostate lobes, ventral prostate (VP) expression declines rapidly following morphogenesis while dorsal (DP) and lateral lobe (LP) expression remains high into adulthood. Steroids modulate prostatic Wnt5a expression during early development with testosterone suppressing Wnt5a and neonatal estrogen increasing expression. In vivo and ex vivo analyses of developing mouse and rat prostates were used to assess the functional roles of Wnt5a. Wnt5a(-/-) murine prostates rescued by organ culture exhibit disturbances in bud position and directed outgrowth leading to large bulbous sacs in place of elongating ducts. In contrast, epithelial cell proliferation, ductal elongation and branchpoint formation are suppressed in newborn rat prostates cultured with exogenous Wnt5a protein. While renal grafts of Wnt5a(-/-) murine prostates revealed that Wnt5a is not essential for cyto- and functional differentiation, a role in luminal cell polarity and lumenization of the ducts was indicated. Wnt5a suppresses prostatic Shh expression while Shh stimulates Wnt5a expression in a lobe-specific manner during early development indicating that Wnt5a participates in cross-talk with other members of the gene regulatory network that control prostate development. Although Wnt5a does not influence prostatic expression of other Wnt morphogens, it suppresses Wif-1 expression and can thus indirectly modulate Wnt signaling. In summary, the present finds demonstrate that Wnt5a is essential for normal prostate development where it regulates bud outgrowth, ductal elongation, branching, cell polarity and lumenization. These findings contribute to the growing body of knowledge on regulatory mechanisms involved in prostate gland development which are key to understanding abnormal growth processes associated with aging.


Subject(s)
Cell Differentiation/physiology , Prostate/cytology , Wnt Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , Animals, Newborn , Antigens, Differentiation/metabolism , Cell Differentiation/drug effects , Cell Polarity/physiology , Estradiol/pharmacology , Extracellular Matrix Proteins/metabolism , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Prostate/embryology , Prostate/growth & development , Prostate/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Testosterone/pharmacology , Wnt Proteins/genetics , Wnt-5a Protein
14.
Endocrinology ; 148(4): 1697-706, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17218409

ABSTRACT

Androgens are essential and sufficient for prostate gland morphogenesis; however, the downstream gene targets that mediate this action are unclear. To identify androgen-regulated genes involved in prostate development, we used short-term organ culture and examined the effect of testosterone on the expression of several critical prostate morphoregulatory genes. Rat ventral prostates (VP) and lateral prostates (LP) were collected at birth, and contralateral lobes were cultured for 18 h in the presence or absence of 10 nM testosterone with or without OH-flutamide to block residual androgens. Gene expression was quantitated using real-time RT-PCR. Although expression of Fgf10, Nkx3.1, and Ptc was increased in both prostate lobes, other genes were regulated by testosterone in a lobe-specific manner. This included up-regulation of epithelial genes FgfR2iiib, Shh, Hoxb13, and Bmp7 in the VP specifically and down-regulation of mesenchymal genes Wnt5a (VP) and Bmp4 (LP). Thus, in addition to stimulation of homeobox genes and paracrine-acting growth factors, androgens may positively regulate prostatic development through suppression of growth inhibitory genes. Because previous studies revealed a similar gene regulation pattern in response to exogenous Fgf10, experiments were performed to identify androgen-regulated genes mediated through Fgf10 signaling. Short-term VP and LP cultures with FgfR antagonist PD173074 and Mek inhibitor U0126 identified epithelial Shh and Hoxb13 up-regulation by androgens to be Fgf10-dependent. We propose that androgen regulation of prostate development is mediated through positive and negative regulation of multiple morphoregulatory genes acting in combination through complex gene networks. Lobe-specific responses may provide a developmental basis for prostate gland heterogeneity.


Subject(s)
Fibroblast Growth Factor 10/physiology , Gene Expression Regulation, Developmental/drug effects , Morphogenesis/genetics , Prostate/embryology , Testosterone/pharmacology , Animals , Female , Male , Models, Biological , Morphogenesis/drug effects , Organ Culture Techniques , Pregnancy , Prostate/drug effects , Prostate/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
15.
Reprod Toxicol ; 23(3): 374-82, 2007.
Article in English | MEDLINE | ID: mdl-17123779

ABSTRACT

Prostate morphogenesis occurs in utero in humans and during the perinatal period in rodents. While largely driven by androgens, there is compelling evidence for a permanent influence of estrogens on prostatic development. If estrogenic exposures are abnormally high during the critical developmental period, permanent alterations in prostate morphology and function are observed, a process referred to as developmental estrogenization. Using the neonatal rodent as an animal model, it has been shown that early exposure to high doses of estradiol results in an increased incidence of prostatic lesions with aging which include hyperplasia, inflammatory cell infiltration and prostatic intraepithelial neoplasia or PIN, believed to be the precursor lesion for prostatic adenocarcinoma. The present review summarizes research performed in our laboratory to characterize developmental estrogenization and identify the molecular pathways involved in mediating this response. Furthermore, recent studies performed with low-dose estradiol exposures during development as well as exposures to environmentally relevant doses of the endocrine disruptor bisphenol A show increased susceptibility to PIN lesions with aging following additional adult exposure to estradiol. Gene methylation analysis revealed a potential epigenetic basis for the estrogen imprinting of the prostate gland. Taken together, our results suggest that a full range of estrogenic exposures during the postnatal critical period - from environmentally relevant bisphenol A exposure to low-dose and pharmacologic estradiol exposures - results in an increased incidence and susceptibility to neoplastic transformation of the prostate gland in the aging male which may provide a fetal basis for this adult disease.


Subject(s)
Aging , Estrogens/poisoning , Maternal Exposure/adverse effects , Prostatic Neoplasms/etiology , Animals , Embryonic Development/drug effects , Female , Humans , Male , Pregnancy , Prostatic Neoplasms/pathology
16.
Prostate ; 66(12): 1275-84, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16741922

ABSTRACT

BACKGROUND: There has been a determined search for therapies specifically aimed at eradicating tumor cells while leaving normal host cells unaffected. This goal can potentially be accomplished by engaging tumor antigen-specific T-cell repertoire to attack the tumor. A pre-requisite for a successful T-cell-mediated attack against tumors or pathogens is that the target tissues express major histocompatibility complex (MHC) molecules. Using newer anti-MHC class I and MHC class II antibody reagents, we re-examined the expression of MHC in both human and mouse prostate tumors and their microenvironments. METHODS: Using immunocytochemistry, we examined the expression of MHC class I, class II, and CD3 molecules on cryopreserved human and mouse prostate tumor samples. RESULTS: MHC class I molecules are expressed by the entire spectrum of different stages of both human and mouse prostate tumor cells. Additionally, cells of the hematopoietic lineage, dispersed in the tumor microenvironment, showed significant expression of MHC class II molecules. Human prostate tumors also show a significant infiltrate of CD3+ T cells. CONCLUSIONS: Expression of MHC class I and class II molecules within the prostate tumor microenvironment are consequential for T-cell-mediated immunotherapeutic approaches against prostate cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class I/metabolism , Prostatic Neoplasms/metabolism , Aged , Animals , CD3 Complex/genetics , CD3 Complex/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Middle Aged , Neoplasm Staging , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
17.
Proc Natl Acad Sci U S A ; 103(21): 8179-84, 2006 May 23.
Article in English | MEDLINE | ID: mdl-16690748

ABSTRACT

Considerable animal and human data have indicated that selenium is effective in reducing the incidence of several different types of cancer, including that of the prostate. However, the mechanism by which selenium inhibits carcinogenesis remains unknown. One possibility is that dietary selenium influences the levels of selenium-containing proteins, or selenoproteins. Selenoproteins contain selenium in the form of selenocysteine and perform a variety of cellular functions, including antioxidant defense. To determine whether the levels of selenoproteins can influence carcinogenesis independent of selenium intake, a unique mouse model was developed by breeding two transgenic animals: mice with reduced selenoprotein levels because of the expression of an altered selenocysteine-tRNA (i6A-) and mice that develop prostate cancer because of the targeted expression of the SV40 large T and small t oncogenes to that organ [C3(1)/Tag]. The resulting bigenic animals (i6A-/Tag) and control WT/Tag mice were assessed for the presence, degree, and progression of prostatic epithelial hyperplasia and nuclear atypia. The selenoprotein-deficient mice exhibited accelerated development of lesions associated with prostate cancer progression, implicating selenoproteins in cancer risk and development and raising the possibility that selenium prevents cancer by modulating the levels of these selenoproteins.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Selenoproteins/deficiency , Animals , Disease Models, Animal , Glutathione Peroxidase/metabolism , Male , Mice , Mice, Transgenic , Neoplasm Invasiveness , Prostate/metabolism , Selenoproteins/genetics
18.
Ann N Y Acad Sci ; 1089: 1-13, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17261752

ABSTRACT

Estrogens play a physiologic role during prostate development with regard to programming stromal cells and directing early morphogenic events. However, if estrogenic exposures are abnormally high during the critical developmental period, permanent alterations in prostate branching morphogenesis and cellular differentiation will result, a process referred to as neonatal imprinting or developmental estrogenization. These perturbations are associated with an increased incidence of prostatic lesions with aging, which include hyperplasia, inflammation, and dysplasia. To understand how early estrogenic exposures can permanently alter the prostate and predispose it to neoplasia, we examined the effects of estrogens on prostatic steroid receptors and key developmental genes. Transient and permanent alterations in prostatic AR, ERalpha, ERbeta, and RARs are observed. We propose that estrogen-induced alterations in these critical transcription factors play a fundamental role in initiating prostatic growth and differentiation defects by shifting the prostate from an androgen-dominated gland to one whose development is regulated by estrogens and retinoids. This in turn leads to specific disruptions in the expression patterns of key prostatic developmental genes that normally dictate morphogenesis and differentiation. Specifically, we find transient reductions in Nkx3.1 and permanent reductions in Hoxb-13, which lead to differentiation defects particularly within the ventral lobe. Prolonged developmental expression of Bmp-4 contributes to hypomorphic growth throughout the prostatic complex. Reduced expression of Fgf10 and Shh and their cognate receptors in the dorsolateral lobes leads to branching defects in those specific regions in response to neonatal estrogens. We hypothesize that these molecular changes initiated early in life predispose the prostate to the neoplastic state upon aging.


Subject(s)
Estrogens/physiology , Prostate/growth & development , Prostatic Diseases/etiology , Animals , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Intercellular Signaling Peptides and Proteins/analysis , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Prostate/abnormalities , Prostate/metabolism , Prostatic Hyperplasia/etiology , Rats , Receptors, Steroid/genetics , Receptors, Steroid/physiology
19.
Dev Biol ; 278(2): 396-414, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15680359

ABSTRACT

Brief exposure of rats to high-dose estrogen during the neonatal period interrupts prostate development in a lobe-specific manner and predisposes the gland to dysplasia with aging, a phenomenon referred to as developmental estrogenization. Our previous studies have revealed that these effects are initiated through altered steroid receptor expression; however, the immediate downstream targets remain unclear. We have recently shown that developmental expression of Shh-ptc-gli is downregulated in the dorsolateral prostate following estrogenization, and this is responsible, in part, for branching deficits observed in that prostatic region specifically. In the present study, we examine the role of Fgf10 signaling during rat prostate development and as a mediator of the developmental estrogenized phenotype. Fgf10 and FgfR2iiib localize to the distal signaling center of elongating and branching ducts in separate prostate lobes where they regulate the expression of multiple morphoregulatory genes including Shh, ptc, Bmp7, Bmp4, Hoxb13, and Nkx3.1. Ventral and lateral lobe organ cultures and mesenchyme-free ductal cultures demonstrate a direct role for Fgf10/FgfR2iiib in ductal elongation, branching, epithelial proliferation, and differentiation. Based on these findings, a model is proposed depicting the localized expression and feedback loops between several morphoregulatory factors in the developing prostate that contribute to tightly regulated branching morphogenesis. Similar to Shh-ptc-gli, neonatal estrogen exposure downregulates Fgf10, FgfR2iiib, and Bmp7 expression in the dorsolateral prostate while ventral lobe expression of these genes is unaffected. Lateral prostate organ culture experiments demonstrate that growth and branching inhibition as well as Fgf10/FgfR2iiib suppression are mediated directly at the prostatic level. Furthermore, exogenous Fgf10 fully rescues the growth and branching deficits due to estrogen exposure. Together, these studies demonstrate that alterations in Fgf10 signaling are a proximate cause of Shh-ptc-gli and Bmp7 downregulation that together result in branching inhibition of the dorsolateral prostate following neonatal estrogen exposure.


Subject(s)
Fibroblast Growth Factors/physiology , Gene Expression Regulation, Developmental , Prostate/growth & development , Aging , Animals , Animals, Newborn , Base Sequence , Cell Culture Techniques , DNA Primers , Estrogens/physiology , Fibroblast Growth Factor 10 , In Situ Hybridization , Male , Morphogenesis , Rats , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...