Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(28): 18246-18256, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38975730

ABSTRACT

The realization of above room-temperature ferromagnetism in the two-dimensional (2D) magnet Fe5GeTe2 represents a major advance for the use of van der Waals (vdW) materials in practical spintronic applications. In particular, observations of magnetic skyrmions and related states within exfoliated flakes of this material provide a pathway to the fine-tuning of topological spin textures via 2D material heterostructure engineering. However, there are conflicting reports as to the nature of the magnetic structures in Fe5GeTe2. The matter is further complicated by the study of two types of Fe5GeTe2 crystals with markedly different structural and magnetic properties, distinguished by their specific fabrication procedure: whether they are slowly cooled or rapidly quenched from the growth temperature. In this work, we combine X-ray and electron microscopy to observe the formation of magnetic stripe domains, skyrmion-like type-I, and topologically trivial type-II bubbles, within exfoliated flakes of Fe5GeTe2. The results reveal the influence of the magnetic ordering of the Fe1 sublattice below 150 K, which dramatically alters the magnetocrystalline anisotropy and leads to a complex magnetic phase diagram and a sudden change of the stability of the magnetic textures. In addition, we highlight the significant differences in the magnetic structures intrinsic to slow-cooled and quenched Fe5GeTe2 flakes.

2.
Nano Lett ; 23(22): 10126-10131, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955345

ABSTRACT

Magnetism in reduced dimensionalities is of great fundamental interest while also providing perspectives for applications of materials with novel functionalities. In particular, spin dynamics in two dimensions (2D) have become a focus of recent research. Here, we report the observation of coherent propagating spin-wave dynamics in a ∼30 nm thick flake of 2D van der Waals ferromagnet Fe5GeTe2 using X-ray microscopy. Both phase and amplitude information were obtained by direct imaging below TC for frequencies from 2.77 to 3.84 GHz, and the corresponding spin-wave wavelengths were measured to be between 1.5 and 0.5 µm. Thus, parts of the magnonic dispersion relation were determined despite a relatively high magnetic damping of the material. Numerically solving an analytic multilayer model allowed us to corroborate the experimental dispersion relation and predict the influence of changes in the saturation magnetization or interlayer coupling, which could be exploited in future applications by temperature control or stacking of 2D-heterostructures.

3.
Adv Mater ; 35(12): e2208930, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637996

ABSTRACT

Topological charge plays a significant role in a range of physical systems. In particular, observations of real-space topological objects in magnetic materials have been largely limited to skyrmions - states with a unitary topological charge. Recently, more exotic states with varying topology, such as antiskyrmions, merons, or bimerons and 3D states such as skyrmion strings, chiral bobbers, and hopfions, have been experimentally reported. Along these lines, the realization of states with higher-order topology has the potential to open new avenues of research in topological magnetism and its spintronic applications. Here, real-space imaging of such spin textures, including skyrmion, skyrmionium, skyrmion bag, and skyrmion sack states, observed in exfoliated flakes of the van der Waals magnet Fe3-x GeTe2 (FGT) is reported. These composite skyrmions may emerge from seeded, loop-like states condensed into the stripe domain structure, demonstrating the possibility to realize spin textures with arbitrary integer topological charge within exfoliated flakes of 2D magnets. The general nature of the formation mechanism motivates the search for composite skyrmion states in both well-known and new magnetic materials, which may yet reveal an even richer spectrum of higher-order topological objects.

4.
Nano Lett ; 22(23): 9236-9243, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36400013

ABSTRACT

Skyrmions have been well studied in chiral magnets and magnetic thin films due to their potential application in practical devices. Recently, monochiral skyrmions have been observed in two-dimensional van der Waals magnets. Their atomically flat surfaces and capability to be stacked into heterostructures offer new prospects for skyrmion applications. However, the controlled local nucleation of skyrmions within these materials has yet to be realized. Here, we utilize real-space X-ray microscopy to investigate a heterostructure composed of the 2D ferromagnet Fe3GeTe2 (FGT), an insulating hexagonal boron nitride layer, and a graphite top electrode. Upon a stepwise increase of the voltage applied between the graphite and FGT, a vertically conducting pathway can be formed. This nanocontact allows the tunable creation of individual skyrmions via single nanosecond pulses of low current density. Furthermore, time-resolved magnetic imaging highlights the stability of the nanocontact, while our micromagnetic simulations reproduce the observed skyrmion nucleation process.

5.
ACS Appl Electron Mater ; 4(9): 4427-4437, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36185075

ABSTRACT

Skyrmion-based devices have been proposed as a promising solution for low-energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine skyrmions in FeGe device shapes using Lorentz transmission electron microscopy to reveal the consequences of skyrmion confinement in a device-like structure. Dumbbell-shaped elements were created by focused ion beam milling to provide regions where single skyrmions are confined adjacent to areas containing a skyrmion lattice. Simple block shapes of equivalent dimensions were also prepared to allow a direct comparison with skyrmion formation in a less complex, yet still confined, device geometry. The impact of applying a magnetic field and varying the temperature on the formation of skyrmions within the shapes was examined. This revealed that it is not just confinement within a small device structure that controls the position and number of skyrmions but that a complex device geometry changes the skyrmion behavior, including allowing skyrmions to form at lower applied magnetic fields than in simple shapes. The impact of edges in complex shapes is observed to be significant in changing the behavior of the magnetic textures formed. This could allow methods to be developed to control both the position and number of skyrmions within device structures.

6.
ACS Nano ; 15(1): 387-395, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33119252

ABSTRACT

Nanoscopic lamellae of centrosymmetric ferromagnetic alloys have recently been reported to host the biskyrmion spin texture; however, this has been disputed as the misidentication of topologically trivial type-II magnetic bubbles. Here we demonstrate resonant soft X-ray holographic imaging of topological magnetic states in lamellae of the centrosymmetric alloy (Mn1-xNix)0.65Ga0.35 (x = 0.5), showing the presence of magnetic stripes evolving into single core magnetic bubbles. We observe rotation of the stripe phase via the nucleation and destruction of disclination defects. This indicates the system behaves as a conventional uniaxial ferromagnet. By utilizing the holography with extended reference by autocorrelation linear differential operator (HERALDO) method, we show tilted holographic images at 30° incidence confirming the presence of type-II magnetic bubbles in this system. This study demonstrates the utility of X-ray imaging techniques in identifying the topology of localized structures in nanoscale magnetism.

7.
Adv Mater ; 31(16): e1806598, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30844122

ABSTRACT

The intense research effort investigating magnetic skyrmions and their applications for spintronics has yielded reports of more exotic objects including the biskyrmion, which consists of a bound pair of counter-rotating vortices of magnetization. Biskyrmions have been identified only from transmission electron microscopy images and have not been observed by other techniques, nor seen in simulations carried out under realistic conditions. Here, quantitative Lorentz transmission electron microscopy, X-ray holography, and micromagnetic simulations are combined to search for biskyrmions in MnNiGa, a material in which they have been reported. Only type-I and type-II magnetic bubbles are found and images purported to show biskyrmions can be explained as type-II bubbles viewed at an angle to their axes. It is not the magnetization but the magnetic flux density resulting from this object that forms the counter-rotating vortices.

SELECTION OF CITATIONS
SEARCH DETAIL
...