Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(3)2024 03 04.
Article in English | MEDLINE | ID: mdl-38540391

ABSTRACT

Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.


Subject(s)
Infertility, Female , Primary Ovarian Insufficiency , Animals , Female , Humans , Mice , DNA Helicases/genetics , Homozygote , Infertility, Female/genetics , Mutation, Missense , Primary Ovarian Insufficiency/genetics
2.
Endocrinology ; 164(5)2023 03 13.
Article in English | MEDLINE | ID: mdl-36786658

ABSTRACT

During sex determination in the mouse, fibroblast growth factor 9 signals through the fibroblast growth factor receptor 2c isoform (FGFR2c) to trigger Sertoli cell and testis development from 11.5 days post coitum (dpc). In the XX gonad, the FOXL2 and WNT4/RSPO1 pathways drive granulosa cell and ovarian development. The function of FGFR2 in the developing ovary, and whether FGFR2 is required in the testis after sex determination, is not clear. In fetal mouse gonads from 12.5 dpc, FGFR2 shows sexually dimorphic expression. In XX gonads, FGFR2c is coexpressed with FOXL2 in pregranulosa cells, whereas XY gonads show FGFR2b expression in germ cells. Deletion of Fgfr2c in XX mice led to a marked decrease/absence of germ cells by 13.5 dpc in the ovary. This indicates that FGFR2c in the somatic pregranulosa cells is required for the maintenance of germ cells. Surprisingly, on the Fgfr2c-/- background, the germ cell phenotype could be rescued by ablation of Foxl2, suggesting a novel mechanism whereby FGFR2 and FOXL2 act antagonistically during germ cell development. Consistent with low/absent FGFR2 expression in the Sertoli cells of 12.5 and 13.5 dpc XY gonads, XY AMH:Cre; Fgfr2flox/flox mice showed normal testis morphology and structures during fetal development and in adulthood. Thus, FGFR2 is not essential for maintaining Sertoli cell fate after sex determination. Combined, these data show that FGFR2 is not necessary for Sertoli cell function after sex determination but does play an important role in the ovary.


Subject(s)
Ovary , Receptor, Fibroblast Growth Factor, Type 2 , Male , Female , Mice , Animals , Ovary/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Gonads/metabolism , Testis/metabolism , Germ Cells/metabolism , Sex Determination Processes
3.
Clin Genet ; 103(3): 277-287, 2023 03.
Article in English | MEDLINE | ID: mdl-36349847

ABSTRACT

46,XY gonadal dysgenesis (GD) is a Disorder/Difference of Sex Development (DSD) that can present with phenotypes ranging from ambiguous genitalia to complete male-to-female sex reversal. Around 50% of 46,XY DSD cases receive a molecular diagnosis. In mice, Fibroblast growth factor 9 (FGF9) is an important component of the male sex-determining pathway. Two FGF9 variants reported to date disrupt testis development in mice, but not in humans. Here, we describe a female patient with 46,XY GD harbouring the rare FGF9 variant (missense mutation), NM_002010.2:c.583G > A;p.(Asp195Asn) (D195N). By biochemical and cell-based approaches, the D195N variant disrupts FGF9 protein homodimerisation and FGF9-heparin-binding, and reduces both Sertoli cell proliferation and Wnt4 repression. XY Fgf9D195N/D195N foetal mice show a transient disruption of testicular cord development, while XY Fgf9D195N/- foetal mice show partial male-to-female gonadal sex reversal. In the general population, the D195N variant occurs at an allele frequency of 2.4 × 10-5 , suggesting an oligogenic basis for the patient's DSD. Exome analysis of the patient reveals several known and novel variants in genes expressed in human foetal Sertoli cells at the time of sex determination. Taken together, our results indicate that disruption of FGF9 homodimerization impairs testis determination in mice and, potentially, also in humans in combination with other variants.


Subject(s)
Fibroblast Growth Factor 9 , Gonadal Dysgenesis, 46,XY , Humans , Male , Female , Mice , Animals , Dimerization , Fibroblast Growth Factor 9/genetics , Testis , Gonads , Gonadal Dysgenesis, 46,XY/genetics
4.
J Nutr ; 152(6): 1426-1437, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35102419

ABSTRACT

BACKGROUND: Resistant starch (RS) confers many health benefits, mostly through the microbial production of SCFAs, but foods containing appreciable RS are limited. High-amylose wheat (HAW) is high in RS and lowers the glycemic response of foods, but whether it can improve gastrointestinal health measures is unknown. OBJECTIVES: The objective of this study was to determine whether daily consumption of HAW food products improved markers of gastrointestinal health in healthy men and women compared with similar foods made from conventional wheat. METHODS: Eighty healthy adults (47 women and 33 men) were enrolled in a 4-arm parallel, randomized-controlled, double-blind trial. After a 2-wk low-dietary fiber run-in period, they were randomly allocated to 1 of 4 treatment groups: low-amylose wheat (LAW)-refined (LAW-R), LAW-wholemeal (LAW-W), HAW-refined (HAW-R), and HAW-wholemeal (HAW-W) and consumed the assigned test bread (160 g/d) and biscuits (75 g/d) for 4 wk. Fecal biochemical markers were measured at baseline and 4 wk. Microbial abundance and diversity were quantified using 16S ribosomal RNA sequencing and perceived gut comfort by a semiquantitative questionnaire completed at baseline, 2 wk, and 4 wk. RESULTS: HAW showed similar effects on fecal output and excretion of total SCFA compared with LAW, but changes were observed in secondary measures for the refined treatment groups. At 4 wk, the HAW-R group had 38% higher fecal butyrate excretion than the LAW-R group (P < 0.05), and higher fecal SCFA-producing bacteria, Roseburia inulinivorans (P < 0.001), than at baseline. In comparison with baseline, LAW-R increased fecal p-cresol concentration, and fecal abundance of a p-cresol-producing bacterium, Clostridium from the Peptostreptococcaceae family, but both were reduced by HAW-R. Amylose level did not affect measures of fecal consistency or adversely affecting digestive comfort. CONCLUSIONS: Increasing RS intake of healthy adults by substituting refined conventional wheat with refined HAW modulates fecal metabolites and microbes associated with gastrointestinal health.This trial was registered at anzctr.org.au as ACTRN12618001060235.


Subject(s)
Gastrointestinal Microbiome , Adult , Amylose , Bacteria , Biomarkers , Feces/microbiology , Female , Flour , Humans , Male , Resistant Starch , Triticum
5.
Rice (N Y) ; 14(1): 102, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34902082

ABSTRACT

Diet-related noncommunicable diseases impose a heavy burden on human health worldwide. Rice is a good target for diet-related disease prevention strategies because it is widely consumed. Liu et al. (Proc Natl Acad Sci USA 115(44):11327-11332, 2018. https://doi.org/10.1073/pnas.1806304115 ) demonstrated that increasing the number of cell layers and thickness of putative aleurone in ta2-1 (thick aleurone 2-1) mutant rice enhances simultaneously the content of multiple micronutrients. However, the increases of aleurone-associated nutrients were not proportional to the increases in the aleurone thickness. In this study, first, cytohistological analyses and transmission electron microscopy demonstrated that the multilayer in ta2-1 exhibited aleurone cell structural features. Second, we detected an increase in insoluble fibre and insoluble bound-phenolic compounds, a shift in aleurone-specific neutral non-starch polysaccharide profile, enhancement of phytate and minerals such as iron, zinc, potassium, magnesium, sulphur, and manganese, enrichment of triacylglycerol and phosphatidylcholine but slight reduction in free fatty acid, and an increase in oleic fatty acid composition. These findings support our hypothesis that the expanded aleurone-like layers in ta2-1 maintained some of the distinctive aleurone features and composition. We provide perspectives to achieve even greater filling of this expanded micronutrient sink to provide a means for multiple micronutrient enhancements in rice.

6.
Hum Mol Genet ; 29(13): 2148-2161, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32452519

ABSTRACT

In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints). Whether these synostosis-causing FGF9 mutations impact upon gonadal development and DSD etiology has not been explored. We therefore examined embryonic gonads in the well-characterized Fgf9 missense mouse mutants, Fgf9S99N and Fgf9N143T, which phenocopy the skeletal defects of FGF9S99N and FGF9R62G variants, respectively. XY Fgf9S99N/S99N and XY Fgf9N143T/N143T fetal mouse gonads showed severely disorganized testis cords and partial XY sex reversal at 12.5 days post coitum (dpc), suggesting loss of FGF9 function. By 15.5 dpc, testis development in both mutants had partly recovered. Mitotic analysis in vivo and in vitro suggested that the testicular phenotypes in these mutants arise in part through reduced proliferation of the gonadal supporting cells. These data raise the possibility that human FGF9 mutations causative for dominant skeletal conditions can also lead to loss of FGF9 function in the developing testis, at least in mice. Our data suggest that, in humans, testis development is largely tolerant of deleterious FGF9 mutations which lead to skeletal defects, thus offering an explanation as to why XY DSDs are rare in patients with pathogenic FGF9 variants.


Subject(s)
Fibroblast Growth Factor 9/genetics , Ovotesticular Disorders of Sex Development/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Synostosis/genetics , Animals , Disease Models, Animal , Female , Gene Expression Regulation, Developmental/genetics , Gonads/growth & development , Gonads/pathology , Humans , Male , Mice , Mutation, Missense/genetics , Ovotesticular Disorders of Sex Development/pathology , SOX9 Transcription Factor/genetics , Sex Determination Processes/genetics , Sexual Development/genetics
7.
Front Genet ; 11: 289, 2020.
Article in English | MEDLINE | ID: mdl-32300357

ABSTRACT

The enzyme starch synthase IIa (SSIIa) in cereals has catalytic and regulatory roles during the synthesis of amylopectin that influences the functional properties of the grain. Rice endosperm SSIIa is more active in indica accessions compared to japonica lines due to functional SNP variations in the coding region of the structural gene. In this study, downregulating the expression of japonica-type SSIIa in Nipponbare endosperm resulted in either shrunken or opaque grains with an elevated proportion of A-type starch granules. Shrunken seeds had severely reduced starch content and could not be maintained in succeeding generations. In comparison, the opaque grain morphology was the result of weaker down-regulation of SSIIa which led to an elevated proportion of short-chain amylopectin (DP 6-12) and a concomitant reduction in the proportion of medium-chain amylopectin (DP 13-36). The peak gelatinization temperature of starch and the estimated glycemic score of cooked grain as measured by the starch hydrolysis index were significantly reduced. These results highlight the important role of medium-chain amylopectin in influencing the functional properties of rice grains, including its digestibility. The structural, regulatory and nutritional implications of down-regulated japonica-type SSIIa in rice endosperm are discussed.

8.
Nutrients ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396626

ABSTRACT

The human ileostomy model, widely considered the benchmark for determining in vivo starch digestibility, has disadvantages. The ileorectostomised rat model (IRM) is a possible surrogate but evidence as to its validity is scant. In this preliminary study, the resistant starch (RS) content of test breads made from refined low (LAW-R) and high amylose wheat (HAW-R) flours was established in a randomised cross-over trial involving six human ileostomy participants. Starch digestibility of refined breads and diets made from these flours was then evaluated in ileorectostomised rats using a similar experimental format. Physical performance measures and other data were also collected for the rat model. The amount of RS in the low- and high-amylose breads as measured using the human model was 0.8 ± 0.1 and 6.5 ± 0.3 g/100 g, respectively. The RS level of HAW-R bread determined using ileorectostomised rats was 5.5 ± 0.8 g/100 g, about 15% less than that recorded in the human study, whereas for conventional wheat breads the models produced similar RS values. While offering promise, further validation using a wide variety of starchy food products is needed before the IRM can be considered an acceptable alternative for RS determination.


Subject(s)
Bread , Digestion , Ileostomy , Ileum/surgery , Resistant Starch/metabolism , Aged , Animals , Humans , Middle Aged , Rats
9.
Eur J Nutr ; 59(5): 1845-1858, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31273523

ABSTRACT

BACKGROUND: The Paleolithic diet is promoted worldwide for improved gut health. However, there is little evidence available to support these claims, with existing literature examining anthropometric and cardiometabolic outcomes. OBJECTIVE: To determine the association between dietary intake, markers of colonic health, microbiota, and serum trimethylamine-N-oxide (TMAO), a gut-derived metabolite associated with cardiovascular disease. DESIGN: In a cross-sectional design, long-term (n = 44, > 1 year) self-reported followers of a Paleolithic diet (PD) and controls (n = 47) consuming a diet typical of national recommendations were recruited. Diets were assessed via 3-day weighed diet records; 48-h stool for short chain fatty acids using GC/MS, microbial composition via 16S rRNA sequencing of the V4 region using Illumina MiSeq. TMAO was quantified using LC-MS/MS. RESULTS: Participants were grouped according to PD adherence; namely excluding grains and dairy products. Strict Paleolithic (SP) (n = 22) and Pseudo-Paleolithic (PP) (n = 22) groups were formed. General linear modelling with age, gender, energy intake and body fat percentage as covariates assessed differences between groups. Intake of resistant starch was lower in both Paleolithic groups, compared to controls [2.62, 1.26 vs 4.48 g/day (P < 0.05)]; PERMANOVA analysis showed differences in microbiota composition (P < 0.05), with higher abundance of TMA-producer Hungatella in both Paleolithic groups (P < 0.001). TMAO was higher in SP compared to PP and control (P < 0.01), and inversely associated with whole grain intake (r = - 0.34, P < 0.01). CONCLUSIONS: Although the PD is promoted for improved gut health, results indicate long-term adherence is associated with different gut microbiota and increased TMAO. A variety of fiber components, including whole grain sources may be required to maintain gut and cardiovascular health. CLINICAL TRIAL REGISTRATIONS: Australian and New Zealand Clinical Trial Registry (ANZCTRN12616001703493).


Subject(s)
Gastrointestinal Microbiome , Resistant Starch , Australia , Chromatography, Liquid , Cross-Sectional Studies , Diet, Paleolithic , Humans , Methylamines , New Zealand , RNA, Ribosomal, 16S , Tandem Mass Spectrometry
10.
J Nutr ; 149(8): 1335-1345, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31162585

ABSTRACT

BACKGROUND: Conventional wheat-based foods contain high concentrations of readily digestible starch that commonly give these foods a high postprandial glycemic response and may contribute to the development of type 2 diabetes and cardiovascular disease. OBJECTIVES: The aim of this study was to determine if bread made from high-amylose wheat (HAW) and enriched in resistant starch dampens postprandial glycemia compared with bread made from conventional low-amylose wheat (LAW). METHODS: This single-center, randomized, double-blinded, crossover controlled study involved 7 consecutive weekly visits. On separate mornings, 20 healthy nondiabetic men and women (mean age 30 ± 3 y; body mass index 23 ± 0.7 kg/m2) consumed a glucose beverage or 4 different breads (each 121 g); LAW-R (refined), LAW-W (wholemeal), HAW-R, or HAW-W. The starch contents of the LAW and HAW breads were 24% and 74% amylose, respectively. Venous blood samples were collected at regular intervals before and for 3 h after the breakfast meal to measure plasma glucose, insulin, ghrelin, and incretin hormone concentrations, and the incremental area under the curve (AUC) was calculated (mmol/L × 3 h). Satiety and cravings were also measured at 30-min intervals during the postprandial period. RESULTS: HAW breads had a glycemic response (AUC) that was 39% less than that achieved with conventional wheat breads (HAW 39 ± 5 mmol/L × 3 h; LAW 64 ± 5 mmol/L × 3 h; P < 0.0001). Insulinemic and incretin responses were 24-30% less for HAW breads than for LAW breads (P < 0.05). Processing of the flour (wholemeal or refined) did not affect the glycemic, insulinemic, or incretin response. The HAW breads did not influence plasma ghrelin, or subjective measures of satiety or cravings during the postprandial period. CONCLUSIONS: Replacing LAW with HAW flour may be an effective strategy for lowering postprandial glycemic and insulinemic responses to bread in healthy men and women, but further research is warranted. This trial was registered at the Australian and New Zealand Clinical Trials Registry as ACTRN12616001289404.


Subject(s)
Amylose/administration & dosage , Blood Glucose/metabolism , Postprandial Period , Triticum/chemistry , Adult , Amylose/metabolism , Cross-Over Studies , Female , Gastrointestinal Transit , Glucose/administration & dosage , Healthy Volunteers , Humans , Incretins/blood , Insulin/blood , Male , Satiation
11.
Nutrients ; 11(6)2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31208010

ABSTRACT

In adults, fermentation of high amylose maize starch (HAMS), a resistant starch (RS), has a prebiotic effect. Were such a capacity to exist in infants, intake of RS might programme the gut microbiota during a critical developmental period. This study aimed to determine if infant faecal inocula possess the capacity to ferment HAMS or acetylated-HAMS (HAMSA) and characterise associated changes to microbial composition. Faecal samples were collected from 17 healthy infants at two timepoints: Preweaning and within 10 weeks of first solids. Fermentation was assessed using in vitro batch fermentation. Following 24 h incubation, pH, short-chain fatty acid (SCFA) production and microbial composition were compared to parallel control incubations. In preweaning infants, there was a significant decrease at 24 h in pH between control and HAMS incubations and a significant increase in the production of total SCFAs, indicating fermentation. Fermentation of HAMS increased further following commencement of solids. Fermentation of RS with weaning faecal inocula increased Shannon's diversity index (H) and was associated with increased abundance of Bifidobacterium and Bacteroides. In conclusion, the faecal inocula from infants is capable of RS fermentation, independent of stage of weaning, but introduction of solids increases this fermentation capacity. RS may thus function as a novel infant prebiotic.


Subject(s)
Feces/microbiology , Fermentation/physiology , Gastrointestinal Microbiome/physiology , Starch/metabolism , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Humans , Infant , Prebiotics/microbiology , Weaning
12.
Eur J Nutr ; 58(7): 2811-2821, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30284066

ABSTRACT

PURPOSE: Intestinal fermentation of inulin-type fructans, including oligofructose, can modulate adiposity, improve energy regulation, and increase mineral absorption. We aimed to determine whether cereal fructans had greater effects on reducing adiposity and improving mineral absorption compared with oligofructose. METHODS: Thirty-two male Sprague-Dawley rats were randomly assigned to one of four dietary treatments that contained 0% fructan (control), or 5% fructan provided by oligofructose (OF), a barley grain fraction (BGF), or a wheat stem fraction (WSF). After 1 week on the diets, mineral absorption and retention was assessed. At 4 weeks, blood samples were collected for gut hormone analysis, adipose depots were removed and weighed, and caecal digesta was analyzed for pH and short-chain fatty acids (SCFA). RESULTS: The BGF and WSF, but not OF, had lower total visceral fat weights than the Control (p < 0.05). The fructan diets all lowered caecal pH and raised caecal digesta weight and total SCFA content, in comparison to the Control. Caecal propionate levels for OF were similar to the Control and higher for WSF (p < 0.05). Plasma peptide YY and glucagon-like peptide-1 levels were elevated for all fructan groups when compared to Control (p < 0.001) and gastric inhibitory peptide was lower for the WSF compared to the other groups (p < 0.05). The fructan diets improved calcium and magnesium retention, which was highest for WSF (p < 0.05). BGF and WSF in comparison to OF showed differential effects on fermentation, gut hormone levels, and adiposity. CONCLUSIONS: Cereal fructan sources have favorable metabolic effects that suggest greater improvements in energy regulation and mineral status to those reported for oligofructose.


Subject(s)
Adiposity/drug effects , Edible Grain/metabolism , Fructans/metabolism , Fructans/pharmacology , Minerals/metabolism , Oligosaccharides/metabolism , Animals , Disease Models, Animal , Fermentation , Intestinal Mucosa , Intestines , Male , Oligosaccharides/pharmacology , Rats , Rats, Sprague-Dawley
13.
Br J Nutr ; 121(3): 322-329, 2019 02.
Article in English | MEDLINE | ID: mdl-30419974

ABSTRACT

The Paleolithic diet excludes two major sources of fibre, grains and legumes. However, it is not known whether this results in changes to resistant starch (RS) consumption. Serum trimethylamine-N-oxide (TMAO) is produced mainly from colonic fermentation and hepatic conversion of animal protein and is implicated in CVD, but changes in RS intake may alter concentrations. We aimed to determine whether intake of RS and serum concentrations of TMAO varied in response to either the Paleolithic or the Australian Guide to Healthy Eating (AGHE) diets and whether this was related to changes in food group consumption. A total of thirty-nine women (mean age 47 (sd 13) years, BMI 27 (sd 4) kg/m2) were randomised to AGHE (n 17) or Paleolithic diets (n 22) for 4 weeks. Serum TMAO concentrations were measured using liquid chromatography-MS; food groups, fibre and RS intake were estimated from weighed food records. The change in TMAO concentrations between groups (Paleolithic 3·39 µm v. AGHE 1·19 µm, P = 0·654) did not reach significance despite greater red meat and egg consumption in the Paleolithic group (0·65 serves/d; 95 % CI 0·2, 1·1; P <0·01, and 0·22 serves/d; 95 % CI 0·1, 0·4, P <0·05, respectively). RS intake was significantly lower on the Paleolithic diet (P <0·01) and was not associated with TMAO concentrations. However, the limited data for RS and the small sample size may have influenced these findings. While there were no significant changes in TMAO concentrations, increased meat consumption and reduced RS intake warrant further research to examine the markers of gastrointestinal health of Paleolithic diet followers and to update Australian food databases to include additional fibre components.


Subject(s)
Diet, Paleolithic/adverse effects , Methylamines/blood , Starch/analysis , Adult , Diet, Healthy/methods , Female , Healthy Volunteers , Humans , Middle Aged
14.
Plant Biotechnol J ; 17(7): 1261-1275, 2019 07.
Article in English | MEDLINE | ID: mdl-30549178

ABSTRACT

Reliably generating rice varieties with low glycaemic index (GI) is an important nutritional intervention given the high rates of Type II diabetes incidences in Asia where rice is staple diet. We integrated a genome-wide association study (GWAS) with a transcriptome-wide association study (TWAS) to determine the genetic basis of the GI in rice. GWAS utilized 305 re-sequenced diverse indica panel comprising ~2.4 million single nucleotide polymorphisms (SNPs) enriched in genic regions. A novel association signal was detected at a synonymous SNP in exon 2 of LOC_Os05g03600 for intermediate-to-high GI phenotypic variation. Another major hotspot region was predicted for contributing intermediate-to-high GI variation, involves 26 genes on chromosome 6 (GI6.1). These set of genes included GBSSI, two hydrolase genes, genes involved in signalling and chromatin modification. The TWAS and methylome sequencing data revealed cis-acting functionally relevant genetic variants with differential methylation patterns in the hot spot GI6.1 region, narrowing the target to 13 genes. Conversely, the promoter region of GBSSI and its alternative splicing allele (G allele of Wxa ) explained the intermediate-to-high GI variation. A SNP (C˃T) at exon-10 was also highlighted in the preceding analyses to influence final viscosity (FV), which is independent of amylose content/GI. The low GI line with GC haplotype confirmed soft texture, while other two low GI lines with GT haplotype were characterized as hard and cohesive. The low GI lines were further confirmed through clinical in vivo studies. Gene regulatory network analysis highlighted the role of the non-starch polysaccharide pathway in lowering GI.


Subject(s)
Glycemic Index , Oryza/chemistry , Oryza/genetics , Transcriptome , Animals , Digestion , Gene Expression Profiling , Genetic Association Studies , Haplotypes , Humans , Mendelian Randomization Analysis , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Swine
15.
Hum Mutat ; 39(12): 1861-1874, 2018 12.
Article in English | MEDLINE | ID: mdl-30067310

ABSTRACT

Nuclear receptor subfamily 5 group A member 1/Steroidogenic factor 1 (NR5A1; SF-1; Ad4BP) mutations cause 46,XY disorders of sex development (DSD), with phenotypes ranging from developmentally mild (e.g., hypospadias) to severe (e.g., complete gonadal dysgenesis). The molecular mechanism underlying this spectrum is unclear. During sex determination, SF-1 regulates SOX9 (SRY [sex determining region Y]-box 9) expression. We hypothesized that SF-1 mutations in 46,XY DSD patients affect SOX9 expression via the Testis-specific Enhancer of Sox9 core element, TESCO. Our objective was to assess the ability of 20 SF-1 mutants found in 46,XY DSD patients to activate TESCO. Patient DNA was sequenced for SF-1 mutations and mutant SF-1 proteins were examined for transcriptional activity, protein expression, sub-cellular localization and in silico structural defects. Fifteen of the 20 mutants showed reduced SF-1 activation on TESCO, 11 with atypical sub-cellular localization. Fourteen SF-1 mutants were predicted in silico to alter DNA, ligand or cofactor interactions. Our study may implicate aberrant SF-1-mediated transcriptional regulation of SOX9 in 46,XY DSDs.


Subject(s)
Disorder of Sex Development, 46,XY/genetics , Enhancer Elements, Genetic , Mutation , SOX9 Transcription Factor/genetics , Steroidogenic Factor 1/genetics , Adolescent , Adult , Child , Child, Preschool , Computer Simulation , Gene Expression Regulation , HEK293 Cells , Humans , Infant , Infant, Newborn , Ligands , Male , Protein Binding , Sequence Analysis, DNA/methods , Steroidogenic Factor 1/chemistry , Steroidogenic Factor 1/metabolism
16.
Mol Nutr Food Res ; 62(3)2018 02.
Article in English | MEDLINE | ID: mdl-29178599

ABSTRACT

SCOPE: A recent study revealed that the accumulation of gut microbiota-produced acetate (GMPA) led to insulin over-secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet-induced obese rats. METHODS AND RESULTS: The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota-produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis-associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity. CONCLUSION: Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA.


Subject(s)
Acetates/pharmacology , Diet, High-Fat/adverse effects , Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Obesity/diet therapy , Acetates/metabolism , Animals , Butyrates/metabolism , Dysbiosis/diet therapy , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Intestine, Large/drug effects , Intestine, Large/metabolism , Male , Obesity/etiology , Obesity/microbiology , Rats, Wistar , Starch/chemistry , Starch/pharmacology
17.
Sci Rep ; 7(1): 16323, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176597

ABSTRACT

Cigarette smoking is undoubtedly a risk factor for lung cancer. Moreover, smokers with genetic mutations on chromosome 3p21.3, a region frequently deleted in cancer and notably in lung cancer, have a dramatically higher risk of aggressive lung cancer. The RNA binding motif 5 (RBM5) is one of the component genes in the 3p21.3 tumour suppressor region. Studies using human cancer specimens and cell lines suggest a role for RBM5 as a tumour suppressor. Here we demonstrate, for the first time, an in vivo role for RBM5 as a tumour suppressor in the mouse lung. We generated Rbm5 loss-of-function mice and exposed them to a tobacco carcinogen NNK. Upon exposure to NNK, Rbm5 loss-of-function mice developed lung cancer at similar rates to wild type mice. As tumourigenesis progressed, however, reduced Rbm5 expression lead to significantly more aggressive lung cancer i.e. increased adenocarcinoma nodule numbers and tumour size. Our data provide in vivo evidence that reduced RBM5 function, as occurs in a large number of patients, coupled with exposure to tobacco carcinogens is a risk factor for an aggressive lung cancer phenotype. These data suggest that RBM5 loss-of-function likely underpins at least part of the pro-tumourigenic consequences of 3p21.3 deletion in humans.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Lung Neoplasms/metabolism , Lung/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Genes, Tumor Suppressor/physiology , Humans , Lung/pathology , Lung Neoplasms/pathology , Male , Mice , RNA-Binding Proteins/genetics , Tumor Suppressor Proteins/genetics
18.
Endocrinology ; 158(11): 3832-3843, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28938467

ABSTRACT

Male sex determination in mammals relies on sex determining region Y-mediated upregulation of sex determining region-box 9 (SOX9) expression in XY gonads, whereas Wnt family member (WNT)/R-spondin 1 signaling and forkhead box L2 (FOXL2) drive female sex determination in XX gonads. Fibroblast growth factor (FGF) 9 signaling ensures sustained SOX9 expression through repression of one of the ovarian pathways (WNT signaling), whereas the significance of FGF-mediated repression of the FOXL2 pathway has not been studied. Previously, we demonstrated that FGFR2 is the receptor for FGF9 in the XY gonad. Whether a specific isoform (FGFR2b or FGFR2c) is required was puzzling. Here, we show that FGFR2c is required for male sex determination. Initially, in developing mouse embryos at 12.5 to 13.5 days postcoitum (dpc), XY Fgfr2c-/- gonads appear as ovotestes, with SOX9 and FOXL2 expression predominantly localized to the posterior and anterior gonadal poles, respectively. However, by 15.5 dpc, XY Fgfr2c-/- gonads show complete male-to-female sex reversal, evident by the lack of SOX9 and ectopic expression of FOXL2 throughout the gonads. Furthermore, ablation of the Foxl2 gene leads to partial or complete rescue of gonadal sex reversal in XY Fgfr2c-/- mice. Together with previous findings, our data suggest that testis determination involves FGFR2c-mediated repression of both the WNT4- and FOXL2-driven ovarian-determining pathways.


Subject(s)
Forkhead Box Protein L2/genetics , Receptor, Fibroblast Growth Factor, Type 2/physiology , Sex Determination Processes/genetics , Testis/embryology , Animals , Down-Regulation/genetics , Embryo, Mammalian , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ovary/embryology , Ovary/metabolism , Protein Isoforms/genetics , Protein Isoforms/physiology , Testis/metabolism , Wnt4 Protein/genetics
19.
Sci Rep ; 7(1): 5854, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724910

ABSTRACT

Rice lines with slower starch digestibility provide opportunities in mitigating the global rise in type II diabetes and related non-communicable diseases. However, screening for low glycemic index (GI) in rice breeding programs is not possible due to time and cost constraints. This study evaluated the feasibility of using in vitro cooked grain amylolysis, starch mobilization patterns during seed germination, and variation in starch structure and composition in the mature seed to differentiate patterns of starch digestibility. Mobilization patterns of total starch, resistant starch, amylose and amylopectin chains, and free sugars during seed germination revealed that the process is analogous to digestion in the human gastrointestinal tract. The combination of these biochemical markers can be used as an alternative measure to predict GI. Additionally, transcriptome analysis of stored mRNA transcripts in high and low GI lines detected differences in starch metabolism and confirmed the importance of seed storage pathways in influencing digestibility. Pathway analyses supported by metabolomics data revealed that resistant starch, cell wall non-starch polysaccharides and flavonoids potentially contribute to slower digestibility. These new insights can guide precision breeding programs to produce low GI rice with acceptable cooking quality to help mitigate the burden of diet-associated lifestyle diseases.


Subject(s)
Germination , Glycemic Index , Oryza/metabolism , Seeds/growth & development , Starch/metabolism , Amylopectin/metabolism , Amylose/metabolism , Food , Gene Expression Regulation, Plant , Kinetics , Metabolomics , Principal Component Analysis , Seeds/metabolism , Transcriptome/genetics
20.
J Sci Food Agric ; 97(5): 1529-1532, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27404497

ABSTRACT

BACKGROUND: The use of small animal models for studying postprandial changes in circulating nutrients, hormones and metabolic biomarkers is hampered by the limited quantity of blood that can be withdrawn for analysis. Here, we describe the development of an unrestrained, meal-fed rat model, having a permanent or temporary vascular cannula that permits repeated blood sampling. The applicability and performance of the model were evaluated in a series of experiments on acute glycaemic and insulinaemic responses to carbohydrate-based test meals. RESULTS: A test food containing 0.4 g carbohydrate raised blood glucose by 1.5 mmol L-1 . Postprandial blood glucose levels peaked at 15 min and returned to baseline at 180 min, whereas they remained elevated for longer when the test meal contained 1.25 g carbohydrate. The glycaemic response tended (P = 0.063) to be higher when the meal tolerance test was conducted at the start rather than the end of the dark period, but the insulinaemic response was unaffected. The magnitude of the glycaemic response was less for blood collected from the caudal vein compared to that from the jugular vein. Both cannulation strategies were equally effective in enabling return of red blood cells, thus preserving blood volume. CONCLUSION: This improved small animal model affords new opportunities to screen foods for nutrient bioavailability and explore metabolic mechanisms mediating responses to food consumption. © 2016 Society of Chemical Industry.


Subject(s)
Blood Glucose/metabolism , Dietary Carbohydrates/metabolism , Insulin/blood , Postprandial Period/physiology , Animals , Catheters, Indwelling , Circadian Rhythm , Male , Models, Animal , Rats, Sprague-Dawley , Veins
SELECTION OF CITATIONS
SEARCH DETAIL
...