Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Microbiol Spectr ; 11(6): e0103523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37811978

ABSTRACT

IMPORTANCE: An annotated reference genome has revealed P. putredinis NO1 as a useful resource for the identification of new lignocellulose-degrading enzymes for biorefining of woody plant biomass. Utilizing a "structure-omics"-based searching strategy, we identified new potentially lignocellulose-active sequences that would have been missed by traditional sequence searching methods. These new identifications, alongside the discovery of novel enzymatic functions from this underexplored lineage with the recent discovery of a new phenol oxidase that cleaves the main structural ß-O-4 linkage in lignin from P. putredinis NO1, highlight the underexplored and poorly represented family Microascaceae as a particularly interesting candidate worthy of further exploration toward the valorization of high value biorenewable products.


Subject(s)
Ascomycota , Lignin , Lignin/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Oxidative Stress
3.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Article in English | MEDLINE | ID: mdl-36958858

ABSTRACT

Plasmids drive bacterial evolutionary innovation by transferring ecologically important functions between lineages, but acquiring a plasmid often comes at a fitness cost to the host cell. Compensatory mutations, which ameliorate the cost of plasmid carriage, promote plasmid maintenance in simplified laboratory media across diverse plasmid-host associations. Whether such compensatory evolution can occur in more complex communities inhabiting natural environmental niches where evolutionary paths may be more constrained is, however, unclear. Here, we show a substantial fitness cost of carrying the large conjugative plasmid pQBR103 in Pseudomonas fluorescens SBW25 in the plant rhizosphere. This plasmid fitness cost could be ameliorated by compensatory mutations affecting the chromosomal global regulatory system gacA/gacS, which arose rapidly in plant rhizosphere communities and were exclusive to plasmid carriers. These findings expand our understanding of the importance of compensatory evolution in plasmid dynamics beyond simplified lab media. Compensatory mutations contribute to plasmid survival in bacterial populations living within complex microbial communities in their environmental niche.


Subject(s)
Pseudomonas fluorescens , Rhizosphere , Plasmids/genetics , Mutation , Pseudomonas fluorescens/genetics
4.
PLoS Biol ; 21(2): e3001988, 2023 02.
Article in English | MEDLINE | ID: mdl-36787297

ABSTRACT

Beyond their role in horizontal gene transfer, conjugative plasmids commonly encode homologues of bacterial regulators. Known plasmid regulator homologues have highly targeted effects upon the transcription of specific bacterial traits. Here, we characterise a plasmid translational regulator, RsmQ, capable of taking global regulatory control in Pseudomonas fluorescens and causing a behavioural switch from motile to sessile lifestyle. RsmQ acts as a global regulator, controlling the host proteome through direct interaction with host mRNAs and interference with the host's translational regulatory network. This mRNA interference leads to large-scale proteomic changes in metabolic genes, key regulators, and genes involved in chemotaxis, thus controlling bacterial metabolism and motility. Moreover, comparative analyses found RsmQ to be encoded on a large number of divergent plasmids isolated from multiple bacterial host taxa, suggesting the widespread importance of RsmQ for manipulating bacterial behaviour across clinical, environmental, and agricultural niches. RsmQ is a widespread plasmid global translational regulator primarily evolved for host chromosomal control to manipulate bacterial behaviour and lifestyle.


Subject(s)
Bacteria , Proteomics , Plasmids/genetics , Bacteria/genetics , Conjugation, Genetic/genetics , Gene Transfer, Horizontal , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Sci Total Environ ; 789: 147880, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34058593

ABSTRACT

Managing soil to support biodiversity is important to sustain the ecosystem services provided by soils upon which society depends. There is increasing evidence that functional diversity of soil biota is important for ecosystem services, and has been degraded by intensive agriculture. Importantly, the spatial distribution of reservoirs of soil biota in and surrounding arable fields is poorly understood. In a field experiment, grass-clover ley strips were introduced into four arable fields which had been under continuous intensive/conventional arable rotation for more than 10 years. Earthworm communities in arable fields and newly established grass-clover leys, as well as field boundary land uses (hedgerows and grassy field margins), were monitored over 2 years after arable-to-ley conversions. Within 2 years, earthworm abundance in new leys was 732 ± 244 earthworms m-2, similar to that in field margin soils (619 ± 355 earthworms m-2 yr-1) and four times higher than in adjacent arable soil (185 ± 132 earthworms m-2). Relative to the arable soils, earthworm abundance under the new leys showed changes in community composition, structure and functional group, which were particularly associated with an increase in anecic earthworms; thus new leys became more similar to grassy field margins. Earthworm abundance was similar in new leys that were either connected to biodiversity reservoirs i.e. field margins and hedgerows, or not (installed earthworm barriers). This suggests that, for earthworm communities in typical arable fields, biodiversity reservoirs in adjacent field margins and hedgerows may not be critical for earthworm populations to increase. We conclude that the increase in earthworm abundance in the new leys observed over 2 years was driven by recruitment from the existing residual population in arable soils. Therefore, arable soils are also potential reservoirs of biodiversity.


Subject(s)
Oligochaeta , Agriculture , Animals , Biodiversity , Ecosystem , Soil
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903229

ABSTRACT

Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major ß-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.


Subject(s)
Ascomycota/enzymology , Biopolymers/chemistry , Enzymes/chemistry , Lignin/chemistry , Ascomycota/chemistry , Biopolymers/metabolism , Enzymes/genetics , Flavonoids/chemistry , Lignin/metabolism , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxygenases/chemistry , Substrate Specificity/genetics , Triticum/enzymology , Triticum/microbiology
7.
Biotechnol Biofuels ; 11: 166, 2018.
Article in English | MEDLINE | ID: mdl-29946357

ABSTRACT

BACKGROUND: Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform "community-level" metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes. RESULTS: Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements. CONCLUSIONS: A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.

8.
Sci Rep ; 7(1): 2356, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539641

ABSTRACT

Microbial communities metabolize plant biomass using secreted enzymes; however, identifying extracellular proteins tightly bound to insoluble lignocellulose in these microbiomes presents a challenge, as the rigorous extraction required to elute these proteins also lyses the microbes associated with the plant biomass releasing intracellular proteins that contaminate the metasecretome. Here we describe a technique for targeting the extracellular proteome, which was used to compare the metasecretome and meta-surface-proteome of two lignocellulose-degrading communities grown on wheat straw and rice straw. A combination of mass spectrometry-based proteomics coupled with metatranscriptomics enabled the identification of a unique secretome pool from these lignocellulose-degrading communities. This method enabled us to efficiently discriminate the extracellular proteins from the intracellular proteins by improving detection of actively secreted and transmembrane proteins. In addition to the expected carbohydrate active enzymes, our new method reveals a large number of unknown proteins, supporting the notion that there are major gaps in our understanding of how microbial communities degrade lignocellulosic substrates.


Subject(s)
Lignin/metabolism , Microbiota , Proteome/metabolism , Proteomics/methods , Biomass , Mass Spectrometry , Metagenome/genetics , Metagenomics/methods , Oryza/growth & development , Oryza/microbiology , Proteome/genetics , Transcriptome/genetics , Triticum/growth & development , Triticum/microbiology
9.
ISME J ; 11(7): 1680-1687, 2017 07.
Article in English | MEDLINE | ID: mdl-28323280

ABSTRACT

Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity-ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade ß-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates.


Subject(s)
Bacteria/classification , Biodiversity , Biodegradation, Environmental , Soil Microbiology
10.
Plant Cell ; 25(11): 4391-404, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24254125

ABSTRACT

Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments. We demonstrate that hos1 mutants accumulate polyadenylated mRNA in the nucleus and that the circadian defect in hos1 is shared by multiple mutants with aberrant mRNA export, but not in a mutant attenuated in nucleo-cytoplasmic transport of microRNAs. As revealed by RNA sequencing, hos1 exhibits gross changes to the transcriptome with genes in multiple functional categories being affected. In addition, we show that hos1 and other previously described mutants with altered mRNA export affect cold signaling in a similar manner. Our data support a model in which altered mRNA export is important for the manifestation of hos1 circadian clock defects and suggest that HOS1 may indirectly affect cold signaling through disruption of the circadian clock.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Circadian Clocks/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , RNA Transport , RNA, Messenger/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cold Temperature , Cytoplasm/genetics , Cytoplasm/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Plant , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Nuclear Proteins/genetics , Plants, Genetically Modified , Polyadenylation , Promoter Regions, Genetic , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , Signal Transduction/genetics
11.
Physiol Plant ; 148(2): 297-306, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23020599

ABSTRACT

Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO2 on crop physiology, we hypothesize that elevated CO2 interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 µmol m⁻² s⁻¹), low light (LL: 200 µmol m⁻² s⁻¹), ambient CO2 (400 µl l⁻¹) and elevated CO2 (1000 µl l⁻¹). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO2 raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO2 always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO2. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO2. Stomatal density was lower under LL, but this required elevated CO2 and the magnitude was adaxial or abaxial surface-dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO2 is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology.


Subject(s)
Acclimatization/physiology , Carbon Dioxide/pharmacology , Light , Oryza/physiology , Photosynthesis/physiology , Carbohydrate Metabolism/drug effects , Chlorophyll/metabolism , Oryza/drug effects , Oryza/growth & development , Oryza/radiation effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Stomata/drug effects , Plant Stomata/growth & development , Plant Stomata/physiology , Plant Stomata/radiation effects , Ribulose-Bisphosphate Carboxylase/metabolism
12.
Mol Ecol Resour ; 10(3): 475-94, 2010 May.
Article in English | MEDLINE | ID: mdl-21565047

ABSTRACT

We have developed a new approach to create microsatellite primer sets that have high utility across a wide range of species. The success of this method was demonstrated using birds. We selected 35 avian EST microsatellite loci that had a high degree of sequence homology between the zebra finch Taeniopygia guttata and the chicken Gallus gallus and designed primer sets in which the primer bind sites were identical in both species. For 33 conserved primer sets, on average, 100% of loci amplified in each of 17 passerine species and 99% of loci in five non-passerine species. The genotyping of four individuals per species revealed that 24-76% (mean 48%) of loci were polymorphic in the passerines and 18-26% (mean 21%) in the non-passerines. When at least 17 individuals were genotyped per species for four Fringillidae finch species, 71-85% of loci were polymorphic, observed heterozygosity was above 0.50 for most loci and no locus deviated significantly from Hardy-Weinberg proportions. This new set of microsatellite markers is of higher cross-species utility than any set previously designed. The loci described are suitable for a range of applications that require polymorphic avian markers, including paternity and population studies. They will facilitate comparisons of bird genome organization, including genome mapping and studies of recombination, and allow comparisons of genetic variability between species whilst avoiding ascertainment bias. The costs and time to develop new loci can now be avoided for many applications in numerous species. Furthermore, our method can be readily used to develop microsatellite markers of high utility across other taxa.

13.
New Phytol ; 157(1): 9-23, 2003 Jan.
Article in English | MEDLINE | ID: mdl-33873705

ABSTRACT

Studies of Arabidopsis wax biosynthesis mutants indicate that the control of cell fate in the aerial epidermis is dependant upon the synthesis of the waxy cuticle that overlies the epidermal layer. Several cer mutants, originally isolated as wax deficient, not only affect cuticular wax composition but also exhibit large increases in stomatal numbers. Stomatal numbers are also affected in hic mutant plants, but despite HIC encoding a putative wax biosynthetic enzyme the hic phenotype of increased stomatal numbers is more subtle, and only seen at elevated CO2 concentrations. This suggests that environmental effects on stomatal number may be mediated through cuticular wax composition. Other putative wax biosynthetic genes, FDH and LCR, have effects on the number of trichomes that develop in the epidermis, indicating that trichome development may also be affected by cuticle composition. Thus signals from the cuticle may influence how trichome and stomatal numbers in the epidermis are determined. Wax components could be the developmental signalling molecules, or could be the mediating medium for such signals, stimulated by environmental cues, which affect epidermal cell fate. Contents Summary 9 I. Introduction 10 II. Cuticle structure 10 III. Cuticular waxes 10 IV. Cell patterning in the epidermis 11 V. Stomatal development 12 VI. Stomatal development in dicotyledonous plants 12 VII. Mutants in stomatal development 14 VIII. Control of Stomatal Development 14 IX. Cuticle composition affects stomatal development 14 X. The HIC - HI gh Carbon dioxide gene 15 XI. Fatty acid elongases 17 XII. The cuticle: an alternative signalling medium? 17 XIII. Trichome development 18 XIV. Cuticle composition affects trichome development 19 XV. Cuticle composition affects pollen germination 20 XVI. Conclusions 20 Acknowledgements 21 References 21.

SELECTION OF CITATIONS
SEARCH DETAIL
...