Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 116(3): 373-80, 2002.
Article in English | MEDLINE | ID: mdl-11822715

ABSTRACT

The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation Service STATSGO database, with soil dynamics following assumptions based on results of site-specific studies, and area estimates from the USDA Forest Service. Forest Inventory and Analysis data and national-level land cover data sets. Harvesting is assumed to have no effect on soil C. Land use change and forest type transitions affect soil C. We apply the methodology to the southeastern region of the United States as a case study.


Subject(s)
Carbon/analysis , Environmental Monitoring/methods , Models, Theoretical , Trees , Carbon/metabolism , Ecosystem , Forestry , Greenhouse Effect
2.
Science ; 292(5525): 2316-20, 2001 Jun 22.
Article in English | MEDLINE | ID: mdl-11423659

ABSTRACT

For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.


Subject(s)
Atmosphere , Carbon , Trees , Agriculture , Carbon/metabolism , Carbon Dioxide , Conservation of Natural Resources , Ecosystem , Fires , Forestry , Soil , Time Factors , Trees/metabolism , United States , Wood
3.
Science ; 290(5494): 1148-51, 2000 Nov 10.
Article in English | MEDLINE | ID: mdl-11073451

ABSTRACT

Carbon accumulation in forests has been attributed to historical changes in land use and the enhancement of tree growth by CO2 fertilization, N deposition, and climate change. The relative contribution of land use and growth enhancement is estimated by using inventory data from five states spanning a latitudinal gradient in the eastern United States. Land use is the dominant factor governing the rate of carbon accumulation in these states, with growth enhancement contributing far less than previously reported. The estimated fraction of aboveground net ecosystem production due to growth enhancement is 2.0 +/- 4.4%, with the remainder due to land use.


Subject(s)
Biomass , Carbon , Ecosystem , Trees , Agriculture , Carbon/metabolism , Carbon Dioxide , Forestry , Likelihood Functions , Trees/growth & development , Trees/metabolism , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...