Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 587: 143-169, 2017.
Article in English | MEDLINE | ID: mdl-28253953

ABSTRACT

LC3/GABARAP proteins (LC3/GABARAPs) are mammalian orthologues of yeast Atg8, small ubiquitin (Ub)-like proteins (UBLs) whose covalent attachment to lipid membranes is crucial for the growth and closure of the double membrane vesicle called the autophagosome. In the past decade, it was demonstrated that Atg8/LC3/GABARAPs are also required for autophagic degradation of cargos in a selective fashion. Cargo selectivity is ensured by receptor proteins, such as p62/SQSTM1, NBR1, Cue5, Atg19, NIX, Atg32, NCOA4, and FAM134B, which simultaneously bind Atg8/LC3/GABARAPs and the cargo together, thereby linking the core autophagic machinery to the target structure: a protein, an organelle, or a pathogen. LC3-interacting regions (LIRs) are short linear motifs within selective autophagy receptors and some other structural and signaling proteins (e.g., ULK1, ATG13, FIP200, and Dvl2), which mediate binding to Atg8/LC3/GABARAPs. Identification and characterization of LIR-containing proteins have provided important insights into the biology of the autophagy pathway, and studying their interactions with the core autophagy machinery represents a growing area of autophagy research. Here, we present protocols for the identification of LIR-containing proteins, i.e., by yeast-two-hybrid screening, glutathione S-transferase (GST) pulldown experiments, and peptide arrays. The use of two-dimensional peptide arrays also represents a powerful method to identify the residues of the LIR motif that are critical for binding. We also describe a biophysical method for studying interactions between Atg8/LC3/GABARAP and LIR-containing proteins and a protocol for preparation and purification of LIR peptides.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Protein 8 Family/metabolism , Microtubule-Associated Proteins/metabolism , Protein Interaction Mapping/methods , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Apoptosis Regulatory Proteins , Autophagy-Related Protein 8 Family/genetics , Calorimetry/methods , Escherichia coli/genetics , Microtubule-Associated Proteins/genetics , Two-Hybrid System Techniques
2.
Biochem Soc Trans ; 33(Pt 3): 482-4, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15916547

ABSTRACT

A mobile group I intron containing two ribozyme domains and a homing endonuclease gene (twin-ribozyme intron organization) can integrate by reverse splicing into the small subunit rRNA of bacteria and yeast. The integration is sequence-specific and corresponds to the natural insertion site (homing site) of the intron. The reverse splicing is independent of the homing endonuclease gene, but is dependent on the group I splicing ribozyme domain. The observed distribution of group I introns in nature can be explained by horizontal transfer between natural homing sites by reverse splicing and subsequent spread in populations by endonuclease-dependent homing.


Subject(s)
Introns/genetics , RNA Splicing/genetics , RNA, Catalytic/genetics , RNA, Ribosomal/genetics , Animals , Bacteria/genetics , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...