Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nitric Oxide ; 7(2): 109-18, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12223180

ABSTRACT

The effects of aminoguanidine (AG), a specific inhibitor of inducible nitric oxide synthase, on the bleomycin (BL)-induced lung fibrosis was evaluated in mice. The animals were placed into five groups: saline (SA)-instilled drinking water (SA+H(2)O), saline-instilled drinking water containing 0.5%AG (SA+0.5%AG), BL-instilled drinking water (BL+H(2)O), BL-instilled drinking water containing 0.2%AG (BL+0.2%AG), and BL-instilled drinking water containing 0.5%AG (BL+0.5%AG). The mice had free access to H(2)O or H(2)O containing AG and lab chow ad lib 2 days prior to intratracheal (IT) instillation of BL (0.07U/mouse/100 microL) or an equivalent volume of sterile isotonic saline. The mice in the SA+0.5%AG group consumed the greatest amount of AG without any ill effects than the mice in any other group. There were no differences in any of the measured biochemical determinants between the SA+H(2)O and SA+0.5%AG control groups. The IT instillation of BL in the BL+H(2)O group caused significant increases in the lipid peroxidation, hydroxyproline content, and prolyl hydroxylase activity of lungs and influx of inflammatory cells in the broncheoalveolar lavage fluid (BALF) as compared to both control groups. The intake of aminoguanidine by mice in the BL+0.5%AG group caused significant reductions in the BL-induced increases in all measured biochemical indices of lung fibrosis without any effects on the influx of inflammatory cells in the BALF. In fact, AG in both BL-treated groups additionally increased the total cell counts in the BALF from mice in the BL+0.2%AG and BL+0.5%AG groups as compared to the BL+H(2)O group. Histopathological evaluation of the lungs revealed that the mice in the BL+0.5%AG group had markedly fewer fibrotic lesions than mice in the BL+H(2)O group. These results demonstrate that aminoguanidine minimizes the BL-induced lung fibrosis at both the biochemical and the morphological level and support our earlier hypothesis that the production of nitric oxide plays a significant role in the pathogenesis lung fibrosis caused by BL.


Subject(s)
Bleomycin/pharmacology , Guanidines/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Animals , Bronchoalveolar Lavage Fluid/cytology , Cell Count , Disease Models, Animal , Guanidines/administration & dosage , Guanidines/therapeutic use , Hydroxyproline/analysis , Lipid Peroxidation/drug effects , Lung/chemistry , Lung/drug effects , Lung/enzymology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II , Procollagen-Proline Dioxygenase/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Time Factors , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...