Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 96(5): 1041-1046, 2020 09.
Article in English | MEDLINE | ID: mdl-32304233

ABSTRACT

Bioluminescent solid-phase analysis was proposed to monitor the selection process and to determine binding characteristics of the aptamer-target complexes during design and development of the specific aptamers. The assay involves Ca2+ -regulated photoprotein obelin as a simple, sensitive and fast reporter. Applicability and the prospects of the approach were exemplified by identification of DNA aptamers to cardiac troponin I, a highly specific early biomarker for acute myocardial infarction. Two structurally different aptamers specific to various epitopes of troponin I were obtained and then tested in a model bioluminescent assay.


Subject(s)
Calcium/chemistry , Luminescent Proteins/chemistry , SELEX Aptamer Technique/methods , Troponin I/analysis , Aptamers, Nucleotide/chemistry , Base Sequence , Biomarkers/analysis , Limit of Detection , Luminescent Measurements
2.
BMC Genomics ; 20(1): 351, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068137

ABSTRACT

BACKGROUND: Species in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time. RESULTS: Here we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167 bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes. CONCLUSIONS: Our study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species.


Subject(s)
Armillaria/classification , Armillaria/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Interspersed Repetitive Sequences , Mitochondrial Proteins/genetics , High-Throughput Nucleotide Sequencing , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...