Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent Res ; 101(4): 473-482, 2022 04.
Article in English | MEDLINE | ID: mdl-34796774

ABSTRACT

The mammalian dentition is a serially homogeneous structure that exhibits wide numerical and morphological variation among multiple different species. Patterning of the dentition is achieved through complex reiterative molecular signaling interactions that occur throughout the process of odontogenesis. The secreted signaling molecule Sonic hedgehog (Shh) plays a key role in this process, and the Shh coreceptor growth arrest-specific 1 (Gas1) is expressed in odontogenic mesenchyme and epithelium during multiple stages of tooth development. We show that mice engineered with Gas1 loss-of-function mutation have variation in number, morphology, and size of teeth within their molar dentition. Specifically, supernumerary teeth with variable morphology are present mesial to the first molar with high penetrance, while molar teeth are characterized by the presence of both additional and absent cusps, combined with reduced dimensions and exacerbated by the presence of a supernumerary tooth. We demonstrate that the supernumerary tooth in Gas1 mutant mice arises through proliferation and survival of vestigial tooth germs and that Gas1 function in cranial neural crest cells is essential for the regulation of tooth number, acting to restrict Wnt and downstream FGF signaling in odontogenic epithelium through facilitation of Shh signal transduction. Moreover, regulation of tooth number is independent of the additional Hedgehog coreceptors Cdon and Boc, which are also expressed in multiple regions of the developing tooth germ. Interestingly, further reduction of Hedgehog pathway activity in Shhtm6Amc hypomorphic mice leads to fusion of the molar field and reduced prevalence of supernumerary teeth in a Gas1 mutant background. Finally, we demonstrate defective coronal morphology and reduced coronal dimensions in the molar dentition of human subjects identified with pathogenic mutations in GAS1 and SHH/GAS1, suggesting that regulation of Hedgehog signaling through GAS1 is also essential for normal patterning of the human dentition.


Subject(s)
Hedgehog Proteins , Tooth, Supernumerary , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dentition , GPI-Linked Proteins , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Humans , Mammals/genetics , Mammals/metabolism , Mice , Odontogenesis , Signal Transduction/physiology , Tooth, Supernumerary/genetics
2.
J Dent Res ; 96(13): 1555-1562, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28771384

ABSTRACT

Cleft lip with or without palate (CLP) and isolated cleft palate (CP) are common human developmental malformations with a complex etiology that reflects a failure of normal facial development. VAX1 encodes a homeobox-containing transcription factor identified as a candidate gene for CLP in human populations, with targeted deletion in mice associated with multiple anomalies, including disruption of the visual apparatus and basal forebrain, lobar holoprosencephaly, and CP. We have investigated Vax1 function during murine palatogenesis but found no evidence for a direct role in this process. Vax1 is not expressed in the developing palate and mutant palatal shelves elevate above the tongue, demonstrating morphology and proliferation indices indistinguishable from wild type. However, mutant mice did have a large midline cavity originating from the embryonic forebrain situated beneath the floor of the hypothalamus and extending through the nasal cavity to expand this region and prevent approximation of the palatal shelves. Interestingly, despite strong expression of Vax1 in ectoderm of the medial nasal processes, the upper lip remained intact in mutant mice. We found further evidence of disrupted craniofacial morphology in Vax1 mutants, including truncation of the midface associated with reduced cell proliferation in forebrain neuroectoderm and frontonasal mesenchyme. Sonic hedgehog (Shh) signal transduction was downregulated in the mutant forebrain, consistent with a role for Vax1 in mediating transduction of this pathway. However, Shh was also reduced in this region, suggestive of a Shh-Vax1 feedback loop during early development of the forebrain and a likely mechanism for the underlying lobar holoprosencephaly. Despite significant associations between VAX1 and human forms of CLP, we find no evidence of a direct role for this transcription factor in development of this region in a mutant mouse model.


Subject(s)
Cleft Palate/genetics , Homeodomain Proteins/genetics , Neuropeptides/genetics , Animals , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Developmental , Holoprosencephaly/genetics , Mice , Phenotype , Prosencephalon/abnormalities , Signal Transduction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...