Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 15826, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30361505

ABSTRACT

We report significant photoelectrochemical activity of Y-doped BiFeO3 (Y-BFO) epitaxial thin films deposited on Nb:SrTiO3 substrates. The Y-BFO photoanodes exhibit a strong dependence of the photocurrent values on the thickness of the films, and implicitly on the induced epitaxial strain. The peculiar crystalline structure of the Y-BFO thin films and the structural changes after the PEC experiments have been revealed by high resolution X-ray diffraction and transmission electron microscopy investigations. The crystalline coherence breaking due to the small ionic radius Y-addition was analyzed using Willliamson-Hall approach on the 2θ-ω scans of the symmetric (00 l) reflections and confirmed by high resolution TEM (HR-TEM) analysis. In the thinnest sample the lateral coherence length (L∥) is preserved on larger nanoregions/nanodomains. For higher thickness values L∥ is decreasing while domains tilt angles (αtilt) is increasing. The photocurrent value obtained for the thinnest sample was as high as Jph = 0.72 mA/cm2, at 1.4 V(vs. RHE). The potentiostatic scans of the Y-BFO photoanodes show the stability of photoresponse, irrespective of the film's thickness. There is no clear cathodic photocurrent observation for the Y-BFO thin films confirming the n-type semiconductor behavior of the Y-BFO photoelectrodes.

2.
ACS Appl Mater Interfaces ; 9(1): 266-278, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28009160

ABSTRACT

In this work, we report the synthesis of functional biocompatible piezoelectric (1 - x)Ba(Ti0.8Zr0.2)TiO3-x(Ba0.7Ca0.3)TiO3, x = 0.45 (BCZT45), thin films with high piezoelectric properties. Pulsed-laser-based techniques, classical pulsed-laser deposition and matrix-assisted pulsed-laser evaporation, were used to synthesize the BCZT45 thin films. The second technique was employed in order to ensure growth on polymer flexible Kapton substrates. The BCZT45 thin films grown by both techniques show similar structural properties and high piezoelectric coefficient coupling between the mechanical loading and electrical potential. While it has long been shown that the electrical potential favors biological processes like osteogenesis, the assessment of cell adhesion and osteogenic differentiation onto BCZT materials has not yet been demonstrated. We prove here for the first time that BCZT 45 coatings on Kapton polymer substrates provide optimal support for osteogenic differentiation of mesenchymal stem cells in the bone marrow.


Subject(s)
Biocompatible Materials/chemistry , Cell Adhesion , Lasers , Osteogenesis , Polymers
3.
Sci Rep ; 6: 25535, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27157090

ABSTRACT

BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε' ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.

4.
J Nanosci Nanotechnol ; 12(12): 9299-301, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23447992

ABSTRACT

The synthesis of iron doped tin oxide by pulsed laser pyrolysis is reported. The as obtained nanoparticles have a dominant SnO2 phase (as revealed by Wide Angle X-ray Scattering), with particles of the order of 10 nm. The doping with iron or iron oxide triggers magnetic properties as confirmed by SQUID experiments. EDX measurements supported the presence of Fe while Wide Angle X-ray Scattering failed to sense any iron or iron-oxide phase. It is concluded that Fe is well dispersed within the tin-oxide nanoparticles. The coercitive field has a complex dependence on the Fe/Sn content suggesting that the magnetization is not controlled solely by the amount of Fe dispersed within the nanoparticles.

5.
J Nanosci Nanotechnol ; 10(9): 6200-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133174

ABSTRACT

Nanocrystalline cubic ZnS doped with 0.2% mol manganese, exhibiting a stable mesoporous structure, was synthesized at room temperature by a non toxic surfactant-assisted liquid-liquid reaction. The X-ray diffraction measurements demonstrate the formation of a sponge-like mesoporous material built from cubic ZnS nanocrystals of 1.8 nm average sizes, with a tight distribution of pores of 1.8 nm mean diameter. The transmission electron microscopy images confirm the formation of the mesoporous structure with walls of 3.1 nm mean thickness built from cubic ZnS nanocrystallites of 2.1 nm average size. The resulting tight distribution of crystallites and pores yields a well resolved Electron Paramagnetic Resonance spectrum, with the narrowest reported component lines attributed to three types of isolated Mn2+ centers, called Mn2+(I), Mn2+(II) and Mn2+(III). From the analysis of the spin Hamiltonian parameters it is shown that in the Mn2+(I) centers the paramagnetic ion is situated at substitutional Zn sites in the ZnS nanocrystals, being also subjected to a small axial distortion. The relative concentration changes under thermal treatment experiments strongly suggest that in both Mn2+(II) and Mn2+(III) centers the Mn2+ ion is localized on the surface of the ZnS nanocrystallites, being bond to an oxygen ion in the first case and to an additional water molecule in the second case.

6.
J Nanosci Nanotechnol ; 10(2): 1223-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20352781

ABSTRACT

Nano-sized iron oxide-based particles have been directly synthesized by the laser induced pyrolysis of a mixture containing iron pentacarbonyl/air (as oxidizer)/ethylene (as sensitizer). In this paper we further demonstrate the possibility to vary the chemical composition and the nanoparticle dimensions of the iron oxide-based materials by handling the oxidation procedure in the frame of the laser pyrolysis process. Thus, nanoparticles with major maghemite/magnetite content may change composition into mixtures with variable amounts of three components: major gamma-Fe2O3/Fe3O4 iron oxide, metallic Fe and cementite Fe3C. By X-ray diffraction (XRD) it is found that the relative proportion of these phases differs in function of the reaction temperature (laser power). As revealed by transmission electron microscopy (TEM), mean particle sizes between about 4 nm and 6 nm and between about 9 and 11 nm may be prepared by varying the oxidation procedure and the laser power, respectively. By the controlled heating of samples (maximum temperature 185 degrees C), increased crystallinity for the gamma-Fe2O3/Fe3O4 oxide phase was found as well as an increase of the mean particle diameters. The examination of the magnetization curves for samples obtained for different laser powers indicates notable differences in the magnetic behavior and parameters. The temperature dependent Mossbauer measurements confirm the formation of larger particles at higher laser power densities as well as the presence of inter-particle magnetic interactions. On this basis, the estimation of phase composition for the different representative samples is given.

SELECTION OF CITATIONS
SEARCH DETAIL
...