Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 144(1): 142, 2018 07.
Article in English | MEDLINE | ID: mdl-30075689

ABSTRACT

Quantitative analysis of phonatory characteristics of rabbits has been widely neglected. However, preliminary studies established the rabbit larynx as a potential model of human phonation. This study reports quantitative data on phonation using ex vivo rabbit larynx models to achieve more insight into dependencies of three main components of the phonation process, including airflow, vocal fold dynamics, and the acoustic output. Sustained phonation was induced in 11 ex vivo rabbit larynges. For 414 phonatory conditions, vocal fold vibrations, acoustic, and aerodynamic parameters were analyzed as functions of longitudinal vocal fold pre-stress, applied air flow, and glottal closure insufficiency. Dimensions of the vocal folds were measured and histological data were analyzed. Glottal closure characteristics improved for increasing longitudinal pre-stress and applied airflow. For the subglottal pressure signal only the cepstral peak prominence showed dependency on glottal closure. In contrast, vibrational, acoustic, and aerodynamic parameters were found to be highly dependent on the degree of glottal closure: The more complete the glottal closure during phonation, the better the aerodynamic and acoustic characteristics. Hence, complete or at least partial glottal closure appears to enhance acoustic signal quality. Finally, results validate the ex vivo rabbit larynx as an effective model for analyzing the phonatory process.


Subject(s)
Biomechanical Phenomena/physiology , Larynx/physiology , Phonation/physiology , Vocal Cords/physiology , Animals , Female , Pressure , Rabbits , Vibration , Voice Disorders/physiopathology
2.
J Acoust Soc Am ; 142(4): 2197, 2017 10.
Article in English | MEDLINE | ID: mdl-29092569

ABSTRACT

Many cases of disturbed voice signals can be attributed to incomplete glottal closure, vocal fold oscillation asymmetries, and aperiodicity. Often these phenomena occur simultaneously and interact with each other, making a systematic, isolated investigation challenging. Therefore, ex vivo porcine experiments were performed which enable direct control of glottal configurations. Different pre-phonatory glottal gap sizes, adduction levels, and flow rates were adjusted. The resulting glottal closure types were identified in a post-processing step. Finally, the acoustic quality, aerodynamic parameters, and the characteristics of vocal fold oscillation were analyzed in reference to the glottal closure types. Results show that complete glottal closure stabilizes the phonation process indicated through a reduced left-right phase asymmetry, increased amplitude and time periodicity, and an increase in the acoustic quality. Although asymmetry and periodicity parameter variation covers only a small range of absolute values, these small variations have a remarkable influence on the acoustic quality. Due to the fact that these parameters cannot be influenced directly, the authors suggest that the (surgical) reduction of the glottal gap seems to be a promising method to stabilize the phonatory process, which has to be confirmed in future studies.


Subject(s)
Glottis/physiology , Larynx/physiology , Phonation , Vocalization, Animal , Acoustics , Animals , Biomechanical Phenomena , Glottis/surgery , Larynx/surgery , Periodicity , Sus scrofa , Time Factors
3.
J Acoust Soc Am ; 141(3): 1349, 2017 03.
Article in English | MEDLINE | ID: mdl-28372097

ABSTRACT

Ex vivo larynx experiments are limited in time due to degeneration of the laryngeal tissues. In order to acquire a significant and comparable amount of data, automatization of current manual experimental procedures is desirable. A computer controlled, electro-mechanical setup was developed for time-dependent variation of specific physiological parameters, including adduction and elongation level of the vocal folds and glottal flow. The setup offers a standardized method to induce defined forces on the laryngeal cartilages. Furthermore, phonation onset is detected automatically and the subsequent measurement procedure is automated and standardized to improve the efficiency of the experimental process. The setup was validated using four ex vivo porcine larynges, whereas each validation measurement series was executed with one separate larynx. Altogether 31 single measurements were undertaken, which can be summed up to a total experimental time of about 4 min. Vocal fold elongation and adduction lead both to an increase in fundamental frequency and subglottal pressure. Measurement procedures like applying defined subglottal pressure steps and onset-offset detection were reliably executed. The setup allows for a computer-based parameter control, which enables fast experimental execution over a wide range of laryngeal configurations. This maximizes the number of measurements and reduces personal effort compared with manual procedures.


Subject(s)
Laryngectomy , Larynx/physiology , Larynx/surgery , Phonation , Transducers, Pressure , Video Recording/methods , Animals , Automation, Laboratory , Biomechanical Phenomena , In Vitro Techniques , Models, Animal , Pressure , Reproducibility of Results , Signal Processing, Computer-Assisted , Sus scrofa , Time Factors
4.
J Biomech ; 55: 128-133, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28285747

ABSTRACT

Within the human larynx, the ventricular folds serve primarily as a protecting valve during swallowing. They are located directly above the sound-generating vocal folds. During normal phonation, the ventricular folds are passive structures that are not excited to periodical oscillations. However, the impact of the ventricular folds on the phonation process has not yet been finally clarified. An experimental synthetic human larynx model was used to investigate the effect of the ventricular folds on the phonation process. The model includes self-oscillating vocal fold models and allows the comparison of the pressure distribution at multiple locations in the larynx for configurations with and without ventricular folds. The results indicate that the ventricular folds increase the efficiency of the phonation process by reducing the phonation threshold level of the pressure below the vocal folds. Two effects caused by the ventricular folds could be identified as reasons: (1) a decrease in the mean pressure level in the region between vocal and ventricular folds (ventricles) and (2) an increase in the glottal flow resistance. The reason for the first effect is a reduction of the pressure level in the ventricles due to the jet entrainment and the low static pressure in the glottal jet. The second effect results from an increase in the glottal flow resistance that enhances the aerodynamic energy transfer into the vocal folds. This effect reduces the onset threshold of the pressure difference across the glottis.


Subject(s)
Models, Biological , Vocal Cords/physiology , Glottis/physiology , Humans , Phonation , Pressure
5.
IEEE Trans Med Imaging ; 35(7): 1615-24, 2016 07.
Article in English | MEDLINE | ID: mdl-26829782

ABSTRACT

Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process.


Subject(s)
Larynx , Female , Humans , Imaging, Three-Dimensional , Laryngoscopy , Male , Phonation , Vibration , Vocal Cords
SELECTION OF CITATIONS
SEARCH DETAIL
...