Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 18(12)2017 Dec 03.
Article in English | MEDLINE | ID: mdl-29207508

ABSTRACT

To prepare the ESA (European Space Agency) spaceflight project "Wound healing and Sutures in Unloading Conditions", we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i) the viability of tissue specimens; (ii) the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii) to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL, FADD, CASP3, CASP8, CASP10, BAX, BCL2, CYC1, APAF1, LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery). BIRC5, CASP9, and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2, BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the performed methods defining analytical protocols proved to be applicable for post-flight analyzes of tissue specimens after sample return.


Subject(s)
Apoptosis/physiology , Wound Healing/physiology , Animals , Apoptosis/genetics , Caspase 3/metabolism , Dermis/metabolism , Epidermis/metabolism , Extracellular Matrix/metabolism , Humans , In Situ Nick-End Labeling , In Vitro Techniques , Skin/metabolism , Wound Healing/genetics
2.
Hum Mol Genet ; 20(16): 3304-21, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21593217

ABSTRACT

Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r(2) = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 × 10(-9) for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 × 10(-8) for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women.


Subject(s)
Alleles , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Chromosomes, Human/genetics , Genetic Predisposition to Disease , Mutation/genetics , Adult , Aged , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 6/genetics , Female , Heterozygote , Humans , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors
3.
Cancer Res ; 70(23): 9742-54, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21118973

ABSTRACT

The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR = 1.10, 95% CI: 1.03-1.18, P = 0.006 and HR = 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P = 7 × 10(-11) - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42% to 50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences might be sufficient to influence the clinical management of mutation carriers.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Mutation , Adult , Aged , Aged, 80 and over , Alleles , Apoptosis Regulatory Proteins , Breast Neoplasms/pathology , Female , Genotype , Heterozygote , High Mobility Group Proteins , Humans , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Progesterone/genetics , Risk Assessment , Risk Factors , Sodium-Bicarbonate Symporters/genetics , Survival Analysis , Trans-Activators , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...