Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748035

ABSTRACT

The ground state of 3d1 MnO42- was studied by density functional theory (DFT) and complete active space self-consistent field (CASSCF) methods in terms of a variety of molecular point group structures to ascertain the site and Jahn-Teller (JT) distortion effect. Modeling results from UB3LYP/6-31+G(d) calculations with natural bond orbital analysis show the four Mn-O bonds are coordinate covalent. The one-electron matrix elements from CASSCF(AILFT) (ab initio ligand field theory) with a second order perturbation treatment were used to calculate the parameters of the angular overlap model. These allowed the calculation of JT stabilization energies and first and second order JT coupling constants for MnO42- with C2v and D2d symmetry. Absorption spectra and excited state transition energies were calculated assuming the lattice distorted geometry was C2v with time-dependent DFT (TDDFT) using the unrestricted coulomb-attenuating UCAM-B3LYP density functional and with the spin-adapted spin-flip DFT using the UBH&HLYP density functional, both with the AUG-CC-PVTZ basis set. The mean absolute deviation of the calculations from experimental excited states for the ligand field and ligand-to-metal charge transfer (LMCT) bands was better than 0.1 eV. Several new assignments for LMCT excited states were made on the basis of the TDDFT excitation results.

2.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34947649

ABSTRACT

Surface-enhanced Raman scattering (SERS) is now a relatively mature field of spectroscopy, with it having been almost 50 years since its first experimental demonstration [...].

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199980

ABSTRACT

Raman spectroscopy is an important method for studying the configuration of Ru bipyridyl dyes on TiO2. We studied the [Ru(II)(4,4'-COOH-2,2'-bpy)2(NCS)2)] dye (N3) adsorbed on a (TiO2)5 nanoparticle using Density Functional Theory, DFT, to optimize the geometry of the complex and to simulate normal Raman scattering, NRS, for the isolated N3 and the N3-(TiO2)5 complex. Two configurations of N3 are found on the surface both anchored with a carboxylate bridging bidentate linkage but one with the two NCS ligands directed away from the surface and one with one NSC tilted away and the other NCS interacting with the surface. Both configurations also had another -COOH group hydrogen bonded to a Ti-O dangling bond. These configurations can be distinguished from each other by Raman bands at 2104 and 2165 cm-1. The former configuration has more intense Normal Raman Scattering, NRS, on TiO2 surfaces and was studied with Time-Dependent Density Functional Theory, TD-DFT, frequency-dependent Raman simulations. Pre-resonance Raman spectra were simulated for a Metal to Ligand Charge Transfer, MLCT, excited state and for a long-distance CT transition from N3 directly to (TiO2)5. Enhancement factors for the MLCT and long-distance CT processes are around 1 × 103 and 2 × 102, respectively. A Herzberg-Teller intensity borrowing mechanism is implicated in the latter and provides a possible mechanism for the photo-injection of electrons to titania surfaces.

4.
J Chem Phys ; 152(22): 224107, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32534546

ABSTRACT

We have theoretically modeled charge transfer (CT) surface enhanced raman scattering (SERS) spectroscopy using pyridine bound to a planar Ag6 metal nanocluster. CT states were determined by natural transition orbital hole-particle plots and CT distance DCT and the amount of charge transferred qCT indices. We first consider a resonance Raman (RR) model based on the Albrecht approach and calculate the ratio of the Herzberg-Teller (HT) B or C term to the Franck-Condon (FC) A term for a totally symmetric a1 vibrational mode exciting in the lowest energy CT state. Using a dimensionless upper limit to the displacement factor ∆ = 0.05 in the FC term based on the examination of overtones in experimental spectra and a calculated HT coupling constant hCT = 0.439 eV/Å(amu)1/2 in the HT term, we calculated the scattering ratio of the HT to FC intensities as 147. This example indicated that for totally symmetric modes, the scattering intensity would all come from HT scattering. To further verify this result, we used the general time-dependent-RR formulation of Baiardi, Bloino, and Barone with the adiabatic Hessian model to calculate the FC, the Frank-Condon and Herzberg-Teller (FCHT), and the HT terms for pyridine in the C2v Ag6-pyridine complexes. For all cases we studied with pyridine in two orientations either parallel or perpendicular to the planar Ag6 cluster, the HT terms, FCHT + HT, dominate the FC term in the CT RR spectrum. These results indicate that for CT SERS, the intensity of all the totally and non-totally symmetric vibrational modes should come from the HT effect.

5.
J Phys Chem A ; 116(25): 6851-69, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22568547

ABSTRACT

We have studied glutathionylcobalamin (GS-Cbl) by optical spectroscopy and with density functional theory (DFT) and time-dependent DFT (TD-DFT) electronic structure methods of truncated geometric models. We examined the geometric structure of the models by comparison of DFT calculations with recent high-resolution experimental X-ray structure data ( Hannibal, L. et al. Inorg. Chem. 2010, 49, 9921) for GS-Cbl, and we examined the TD-DFT excitation simulations by comparison of the models with measured optical spectra. The calculations employed the B3LYP hybrid functional and the nonhybrid BP86 functional in both vacuum and water (conductor polarized continuum model (cpcm)) with the 6-311G(d,p) basis set. The optimized geometric structure calculations for six truncated models were made by varying the chemical structure, solvent model, and the two DFT functionals. All showed similar geometry. Charge decomposition analysis (CDA) and extended charge decomposition analysis (ECDA), especially with BP86 shows the similar charge transfer nature of the Co-S bond in GS-Cbl and the Co-C bond in CH(3)Cbl. Mayer and Wiberg bond orders illustrate the similar covalent nature of the two bonds. Finally, absolute optical spectral simulation calculations were compared with the experimental UV-visible extinction spectrum and the electronic circular dichroism (ECD) differential extinction spectrum. The BP86 method shows more spectral features, and the best fit was found for a GS-Cbl model with 5,6-dimethylbenzimidazole at the BP86/6-311G(d,p) level with a water cpcm solvent model. The excited state transitions were investigated with Martin's natural transition orbitals (NTOs). The BP86 calculations also showed π bonding interactions between Co and the axial S of the GS- ligand in the molecular orbitals (MOs) and NTOs.


Subject(s)
Glutathione/analogs & derivatives , Quantum Theory , Vitamin B 12/analogs & derivatives , Glutathione/chemistry , Molecular Conformation , Spectrophotometry, Ultraviolet , Vitamin B 12/chemistry
6.
J Chem Phys ; 136(14): 144704, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22502540

ABSTRACT

By considering the molecule and metal to form a conjoined system, we derive an expression for the observed Raman spectrum in surface-enhanced Raman scattering. The metal levels are considered to consist of a continuum with levels filled up to the Fermi level, and empty above, while the molecule has discrete levels filled up to the highest occupied orbital, and empty above that. It is presumed that the Fermi level of the metal lies between the highest filled and the lowest unfilled level of the molecule. The molecule levels are then coupled to the metal continuum both in the filled and unfilled levels, and using the solutions to this problem provided by Fano, we derive an expression for the transition amplitude between the ground stationary state and some excited stationary state of the molecule-metal system. It is shown that three resonances contribute to the overall enhancement; namely, the surface plasmon resonance, the molecular resonances, as well as charge-transfer resonances between the molecule and metal. Furthermore, these resonances are linked by terms in the numerator, which result in SERS selection rules. These linked resonances cannot be separated, accounting for many of the observed SERS phenomena. The molecule-metal coupling is interpreted in terms of a deformation potential which is compared to the Herzberg-Teller vibronic coupling constant. We show that one term in the sum involves coupling between the surface plasmon transition dipole and the molecular transition dipole. They are coupled through the deformation potential connecting to charge-transfer states. Another term is shown to involve coupling between the charge-transfer transition and the molecular transition dipoles. These are coupled by the deformation potential connecting to plasmon resonance states. By applying the selection rules to the cases of dimer and trimer nanoparticles we show that the SERS spectrum can vary considerably with excitation wavelength, depending on which plasmon and/or charge-transfer resonance is excited.

7.
J Chem Phys ; 132(21): 214707, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20528041

ABSTRACT

Vibrational frequency calculations were made for a Ag(10)-pyridine vertex complex with density functional theory (DFT) for static simulated spectra and with time-dependent DFT (TD-DFT) for preresonance and resonance simulated spectra using both B3LYP/LANL2DZ and BP86/TZP methodologies. In addition, 40 excited states of the complex were calculated and assigned symmetry based on a C(2v) symmetry of the optimized complex found with B3LYP/LANL2DZ. Molecular orbital isosurfaces show that the excited states involve both Ag(10) intercluster excitations and charge-transfer (CT) excitations between the Ag nanocluster and the pyridine molecule. An excitation around 500 nm involving CT from the Ag cluster to pyridine was found in both calculations. For free pyridine, the relative average deviations between unscaled calculated and experimental results were 1.5 cm(-1) for BP86 and 3.1 cm(-1) for the B3LYP calculations. For the complex, simulated spectra at a variety of excitation wavelengths were calculated. In the case of 514 nm excitation, the simulated Raman cross section from the TD-DFT calculations (near the CT resonance) was plotted versus Raman shift frequency and compared with an experimental surface enhanced Raman scattering (SERS) spectrum obtained on an oxidation-reduction cycle, ORC roughened Ag electrode. The BP86 TD-DFT calculation with finite damping term showed a better fit to experimental spectrum with respect to both relative intensities and frequencies. The average deviation of the unscaled BP86 calculations for 16 bands in the experimental spectrum was 13.0 cm(-1). The calculated spectrum in both cases shows many contributions from nontotally symmetric as well as totally symmetric modes, indicating the contribution of Herzberg-Teller (HT) scattering. The simulated intensities of the Raman modes of different symmetry from Ag(10)-pyridine can be correlated with HT intensity borrowing from excited states of given symmetry and decent oscillator strength. These results explain the appearance of the a(2) mode at 388 cm(-1) and the moderately strong b(2) mode at 1573 cm(-1) found in the SERS experimental spectrum. The good agreement between experimental and simulated results indicates that a small Ag nanocluster-pyridine vertex complex can be used to simulate spectra with good relative intensities, if not absolute intensities, and accurate frequencies for most of the SERS bands for adsorbed pyridine on roughened bulk Ag.


Subject(s)
Models, Chemical , Organometallic Compounds/chemistry , Pyridines/chemistry , Quantum Theory , Silver/chemistry , Electrodes , Oxidation-Reduction , Spectrum Analysis, Raman , Surface Properties , Time Factors
8.
Acc Chem Res ; 42(6): 734-42, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19361212

ABSTRACT

In the late 1970s, signal intensity in Raman spectroscopy was found to be enormously enhanced, by a factor of 10(6) and more recently by as much as 10(14), when an analyte was placed in the vicinity of a metal nanoparticle (particularly Ag). The underlying source of this huge increase in signal in surface-enhanced Raman scattering (SERS) spectroscopy has since been characterized by considerable controversy. Three possible contributions to the enhancement factor have been identified: (i) the surface plasmon resonance in the metal nanoparticle, (ii) a charge-transfer resonance involving transfer of electrons between the molecule and the conduction band of the metal, and (iii) resonances within the molecule itself. These three components are often treated as independently contributing to the overall effect, with the implication that by properly choosing the experimental parameters, one or more can be ignored. Although varying experimental conditions can influence the relative degree to which each resonance influences the total enhancement, higher enhancements can often be obtained by combining two or more resonances. Each resonance has a somewhat different effect on the appearance of the resulting Raman spectrum, and it is necessary to invoke one or more of these resonances to completely describe a particular experiment. However, it is impossible to completely describe all observations of the SERS phenomenon without consideration of all three of these contributions. Furthermore, the relative enhancements of individual spectral lines, and therefore the appearance of the spectrum, depend crucially on the exact extent to which each resonance makes a contribution. In this Account, by examining breakdowns in the Born-Oppenheimer approximation, we have used Herzberg-Teller coupling to derive a single expression for SERS, which includes contributions from all three resonances. Moreover, we show that these three types of resonances are intimately linked by Herzberg-Teller vibronic coupling terms and cannot be considered separately. We also examine the differences between SERS and normal Raman spectra. Because of the various resonant contributions, SERS spectra vary with excitation wavelength considerably more than normal Raman spectra. The relative contributions of totally symmetric and non-totally symmetric lines are also quite different; these differences are due to several effects. The orientation of the molecule with respect to the surface and the inclusion of the metal Fermi level in the list of contributors to the accessible states of the molecule-metal system have a strong influence on the observed changes in the Raman spectrum.

9.
Chemphyschem ; 9(11): 1617-23, 2008 Aug 04.
Article in English | MEDLINE | ID: mdl-18613198

ABSTRACT

We explore the application of a previously suggested formula for determining the degree of charge transfer in surface-enhanced Raman scattering (SERS). SERS is often described as a phenomenon which obtains its enhancement from three major sources, namely the surface plasmon resonance, charge-transfer resonances as well as possible molecular resonances. At any chosen excitation wavelength, it is possible to obtain contributions from several sources and this has led to considerable confusion. The formula for the degree of charge transfer enables one to separate these effects, but it requires that spectra be obtained either at two or more different excitation wavelengths or as a function of applied potential. We apply this formula to several examples, which display rather large charge-transfer contributions to the spectrum. These are p-aminothiophenol (PATP), tetracyano-ethylene (TCNE) and piperidine. In PATP we can show that several lines of the same symmetry give the same degree of charge transfer. In TCNE we are able to identify the charge-transfer transition, which contributes to the effect, and are able to independently determine the degree of charge transfer by wavenumber shifts. This enables a comparison of the two techniques of measurement. In piperidine, we present an example of molecule to metal charge transfer and show that our definition of charge transfer is independent of direction.


Subject(s)
Spectrum Analysis, Raman/methods , Surface Plasmon Resonance , Chemistry, Physical/methods , Electrons , Ethylenes/chemistry , Nitriles/chemistry , Phenols/chemistry , Piperidines/chemistry , Sulfhydryl Compounds/chemistry
10.
J Chem Phys ; 126(24): 244709, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17614579

ABSTRACT

We reexamine the Herzberg-Teller theory of charge-transfer contributions to the theory of surface enhanced Raman scattering (SERS). In previous work, the Kramers-Heisenberg-Dirac framework was utilized to explain many of the observed features in SERS. However, recent experimental and theoretical developments suggest that we revise the theory to take advantage of the time-dependent picture of Raman scattering. Results are obtained for molecular adsorption on nanoparticles in both the strong confinement limit and the weak confinement limit. We show that the Herzberg-Teller contributions to the charge-transfer effect in SERS display a resonance at the molecule-to-metal or metal-to-molecule transition while retaining the selection rules associated with normal Raman spectroscopy (i.e., harmonic oscillator, as opposed to Franck-Condon overlaps). The charge-transfer contribution to the enhancement factor scales as Gamma(-4), where Gamma is the homogeneous linewidth of the charge-transfer transition, and thus is extremely sensitive to the magnitude of this parameter. We show that the Herzberg-Teller coupling term may be associated with the polaron-coupling constant of the surface phonon-electron interaction. A time-dependent expression for the Raman amplitude is developed, and we discuss the implications of these results for both metal and semiconductor nanoparticle surfaces.


Subject(s)
Chemistry, Physical/methods , Nanotechnology/methods , Spectrum Analysis, Raman/methods , Electrons , Metal Nanoparticles/chemistry , Metals/chemistry , Models, Statistical , Nanoparticles/chemistry , Nanotechnology/instrumentation , Scattering, Radiation , Semiconductors , Surface Properties , Time Factors
11.
J Phys Chem A ; 110(28): 8599-604, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16836419

ABSTRACT

Geometry optimizations at the HF, B3LYP, and CASSCF levels of electronic structure theory have been performed for methylcobalamin (MeCbl) model compounds in both the Co(III) (MeCbl(III)) and Co(II) (MeCbl(II)) formal oxidation states. Since the HOMO-LUMO and C-Co sigma-sigma MO gaps are significantly smaller in the MeCbl(II) compounds compared with MeCbl(III), a pseudo-Jahn Teller effect is possible. CASSCF calculations show that there is strong coupling between C-Co sigma-sigma MOs for the MeCbl(II) models leading to strong state mixing with significant total charge density transfer (approximately 0.4 e-), mainly from the C-Co sigma MO to C-Co sigma MO (approximately 0.3 e-). CASSCF(9:7) calculations show that the strong state mixing leads to an increase in the C-Co bond length for MeCbl(II) model compounds from 1.969 A (DFT and HF calculations) to 2.164 A in the base-on MeCbl(II) model and from 1.938 A to 2.144 A in the base-off MeCbl(II) model. Concomitantly, the Co-N axial bond length increases from 2.121 A (DFT) to 2.344 A in the CASSCF calculation. This coupling interaction between states can be used to explain the much lower Co-C bond dissociation enthalpy and much faster bond cleavage rate for the one-electron reduced methylcobalamin radical anion compared to MeCbl(III). It may also be important for axial bond distances in other Co(II) compounds.


Subject(s)
Carbon/chemistry , Cobalt/chemistry , Models, Chemical , Vitamin B 12/analogs & derivatives , Electrons , Molecular Structure , Vitamin B 12/chemistry
12.
J Am Chem Soc ; 128(6): 1922-36, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16464094

ABSTRACT

The electrochemical (EC) reduction mechanism of methylcobalamin (Me-Cbl) in a mixed DMF/MeOH solvent in 0.2 M tetrabutylammonium fluoroborate electrolyte was studied as a function of temperature and solvent ratio vs a nonaqueous Ag/AgCl/Cl(-) reference electrode. Double-potential-step chronoamperometry allowed the rate constant of the subsequent homogeneous reaction to be measured over the temperature range from 0 to -80 degrees C in 40:60 and 50:50 DMF:MeOH ratios. Activation enthalpies are 5.8 +/- 0.5 and 7.6 +/- 0.3 kcal/mol in the 40:60 and 50:50 mixtures of DMF/MeOH, respectively. Digital simulation and curve-fitting for an EC mechanism using a predetermined homogeneous rate constant of 5.5 x 10(3) s(-1) give E degrees' = -1.466 V, k degrees = 0.016 cm/s, and alpha = 0.77 at 20 degrees C for a quasi-reversible electrode process. Digital simulation of the results of Lexa and Savéant (J. Am. Chem. Soc. 1978, 100, 3220-3222) shows that the mechanism is a series of stepwise homogeneous equilibrium processes with an irreversible step following the initial electron transfer (ET) and allows estimation of the equilibrium and rate constants of these reactions. An electron coupling matrix element of H(kA) = (4.7 +/- 1.1) x 10(-4) eV ( approximately 46 J/mol) is calculated for the nonadiabatic ET step for reduction to the radical anion. A reversible bond dissociation enthalpy for homolytic cleavage of Me-Cbl is calculated as 31 +/- 2 kcal/mol. The voltammetry of the ethyl-, n-propyl-, n-butyl-, isobutyl-, and adenosyl-substituted cobalamin was studied, and estimated reversible redox potentials were correlated with Co-C bond distances as determined by DFT (B3LYP/ LANL2DZ) calculations.


Subject(s)
Cobalt/chemistry , Vitamin B 12/chemistry , Computer Simulation , Electrochemistry , Oxidation-Reduction , Thermodynamics
13.
J Am Chem Soc ; 124(31): 9066-7, 2002 Aug 07.
Article in English | MEDLINE | ID: mdl-12149007

ABSTRACT

UV-vis stopped-flow results show that glutathionylcobalamin can react with nitric oxide at pH 7 to form nitrosylcob(II)alamin in a reaction second-order overall. From kinetic studies we suggest that nitric oxide attacks glutathionylcobalamin to form a caged transition state followed by formation of the nitrosylcob(II)alamin.


Subject(s)
Glutathione/analogs & derivatives , Glutathione/chemistry , Nitric Oxide/chemistry , Vitamin B 12/analogs & derivatives , Vitamin B 12/chemistry , Animals , Aorta, Thoracic/drug effects , Glutathione/pharmacology , In Vitro Techniques , Kinetics , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Nitric Oxide/antagonists & inhibitors , Rabbits , Spectrophotometry, Ultraviolet , Vitamin B 12/pharmacology
14.
Inorg Chem ; 41(9): 2548-55, 2002 May 06.
Article in English | MEDLINE | ID: mdl-11978125

ABSTRACT

Electrochemistry and Raman spectroscopy have shown that aquocob(III)alamin (Cbl(III)) can be reduced by nitric oxide (NO) to form Cbl(II) on an electrode surface. The Cbl(II) formed in this way can bind NO to form nitrosyl-cobalamin, Cbl(II)-NO, which is reduced to form Cbl(I) at about -1.0 V vs a KCl saturated Ag/AgCl reference electrode. In addition, nitrite was found to bind both Cbl(III) and Cbl(II) and a binding constant of 3.5 x 10(2) M(-1) was measured for (NO(2)-Cbl(II))(1-). UV-vis spectrophotometry and mass spectroscopy were used to show that Cbl(I) reduces NO to form Cbl(II)-NO and N(2)O and N(2), and this reaction is involved in the cyclic voltammetry of cobalamin in the presence of excess NO where a catalytic reduction of NO occurs involving the cycling of Cbl(II)-NO/Cbl(I). This redox couple is also involved in the electrochemical catalytic reduction of nitrite. These results can be used to explain a number of physiological effects involving NO interaction in biological systems with added cobalamin or with cobalamin in the methionine synthase enzyme.


Subject(s)
Nitric Oxide/chemistry , Nitrites/chemistry , Vitamin B 12/analogs & derivatives , Vitamin B 12/chemistry , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/antagonists & inhibitors , Anions/chemistry , Catalysis , Electrochemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Gas Chromatography-Mass Spectrometry , Homocysteine/metabolism , Hydroxocobalamin/analogs & derivatives , Hydroxocobalamin/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Methionine/metabolism , Molecular Structure , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...