Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 156(4): 575-86, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19159405

ABSTRACT

BACKGROUND AND PURPOSE: Muscarinic stimulation increases myofilament Ca(2+) sensitivity with no apparent inotropic response in normal rat myocardium. Increased myofilament Ca(2+) sensitivity is a molecular mechanism promoting increased contractility in failing cardiac tissue. Thus, muscarinic receptor activation could elicit inotropic responses in ventricular myocardium from rats with heart failure, through increasing phosphorylation of myosin light chain (MLC). EXPERIMENTAL APPROACH: Contractile force was measured in left ventricular papillary muscles from male Wistar rats, 6 weeks after left coronary artery ligation or sham surgery. Muscles were also frozen, and MLC-2 phosphorylation level was quantified. KEY RESULTS: Carbachol (10 micromol.L(-1)) evoked a positive inotropic response only in muscles from rats with heart failure approximating 36% of that elicited by 1 micromol.L(-1) isoproterenol (20 +/- 1.5% and 56 +/- 6.1% above basal respectively). Carbachol-evoked inotropic responses did not correlate with infarction size but did correlate with increased left ventricular end diastolic pressure, heart weight/body weight ratio and lung weight, primary indicators of the severity of heart failure. Only muscarinic receptor antagonists selective for M(2) receptors antagonized carbachol-mediated inotropic effects with the expected potency. Carbachol-evoked inotropic responses and increase in phosphorylated MLC-2 were attenuated by MLC kinase (ML-9) and Rho-kinase inhibition (Y-27632), and inotropic responses were abolished by Pertussis toxin pretreatment. CONCLUSION AND IMPLICATIONS: In failing ventricular muscle, muscarinic receptor activation, most likely via M(2) receptors, provides inotropic support by increasing MLC phosphorylation and consequently, myofilament Ca(2+) sensitivity. Enhancement of myofilament Ca(2+) sensitivity, representing a less energy-demanding mechanism of inotropic support may be particularly advantageous in failing hearts.


Subject(s)
Cardiac Myosins/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Myocardial Contraction/drug effects , Myocardial Infarction/metabolism , Myosin Light Chains/metabolism , Papillary Muscles/metabolism , Receptors, Muscarinic/metabolism , Animals , Blood Pressure/drug effects , Calcium/metabolism , Carbachol/pharmacology , Cardiotonic Agents/pharmacology , Disease Models, Animal , Heart Failure/physiopathology , Heart Ventricles/drug effects , In Vitro Techniques , Isoproterenol/pharmacology , Male , Myocardial Contraction/physiology , Myocardial Infarction/physiopathology , Papillary Muscles/drug effects , Phosphorylation , Protein Binding , Rats , Rats, Wistar
2.
Br J Pharmacol ; 150(2): 143-52, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17160012

ABSTRACT

BACKGROUND AND PURPOSE: Positive inotropic responses (PIR) to 5-hydroxytryptamine (5-HT) are induced in the left ventricle (LV) in rats with congestive heart failure (CHF); this is associated with upregulation of the G(s)-coupled 5-HT(4) receptor. We investigated whether chronic 5-HT(4) receptor blockade improved cardiac function in CHF rats. EXPERIMENTAL APPROACH: Rats were given either the 5-HT(4) antagonist SB207266 (0.5 mg kg(-1) 24h(-1); MI(int)) or placebo (MI(pl)) through mini-osmotic pumps for 6 weeks subsequent to induction of post-infarction CHF. In vivo cardiac function and ex vivo responses to isoprenaline or 5-HT were evaluated using echocardiography and isolated LV papillary muscles, respectively. mRNA levels were investigated using real-time quantitative RT-PCR. KEY RESULTS: LV diastolic function improved, with 4.6% lower LV diastolic diameter and 24.2% lower mitral flow deceleration in MI(int) compared to MI(pl). SB207266 reduced LV systolic diameter by 6.1%, heart weight by 10.2% and lung weight by 13.1%. The changes in posterior wall thickening and shortening velocity, cardiac output, LV systolic pressure and (dP/dt)(max), parameters of LV systolic function, did not reach statistical significance. The PIR to isoprenaline (10 microM) increased by 36% and the response to 5-HT (10 microM) decreased by 57% in MI(int) compared to MI(pl). mRNA levels for ANP, 5-HT(4(b)) and 5-HT(2A) receptors, MHCbeta, and the MHCbeta/MHCalpha -ratio were not significantly changed in MI(int) compared to MI(pl). CONCLUSIONS AND IMPLICATIONS: Treatment with SB207266 to some extent improved in vivo cardiac function and ex vivo myocardial function, suggesting a possible beneficial effect of treatment with a 5-HT(4) receptor antagonist in CHF.


Subject(s)
Heart Failure/drug therapy , Indoles/therapeutic use , Piperidines/therapeutic use , Serotonin 5-HT4 Receptor Antagonists , Adrenergic beta-Agonists/pharmacology , Animals , Cardiac Output/drug effects , Heart Failure/pathology , Heart Failure/physiopathology , Isoproterenol/pharmacology , Lung/drug effects , Lung/pathology , Male , Myocardial Contraction/drug effects , Myocardium/metabolism , Myocardium/pathology , Organ Size/drug effects , RNA, Messenger/biosynthesis , Rats , Rats, Wistar , Receptors, Adrenergic, beta/physiology , Receptors, Serotonin, 5-HT4/biosynthesis , Up-Regulation , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
3.
Acta Physiol Scand ; 184(1): 45-58, 2005 May.
Article in English | MEDLINE | ID: mdl-15847643

ABSTRACT

AIM: We examined the cellular basis for depressed cardiac contractility in rats with congestive heart failure (CHF) secondary to myocardial infarction. METHODS: Six weeks after ligation of the left coronary artery, CHF was confirmed by haemodynamic measures and echocardiographic demonstration of reduced myocardial contractility in vivo. Papillary muscles from CHF animals developed less force than those from sham operated (SHAM) animals. Cell shortening was measured in isolated ventricular myocytes voltage-clamped with high resistance electrodes. Ca2+ transients were measured in fluo-4 loaded myocytes. RESULTS: Contractions triggered by depolarizing test steps from a post conditioning potential of -70 mV were significantly smaller and had significantly reduced velocity of shortening in CHF compared with SHAM myocytes. However, contractions initiated from -40 mV, were similar in amplitude and velocity of shortening in CHF and SHAM cells. L-type Ca2+ current was not significantly different between CHF and SHAM cells, whether activated from -70 or -40 mV. Therefore, in SHAM cells, excitation-contraction coupling exhibited higher gain when contractions were initiated from negative (-70 mV), as compared with depolarized potentials (-40 mV). However, in CHF myocytes, excitation-contraction coupling gain was selectively depressed with steps from -70 mV. This depression of gain in CHF was not accompanied by a significant reduction in sarcoplasmic reticulum Ca2+ content. Isoproterenol increased Ca2+ transients less in CHF than SHAM myocytes. CONCLUSION: In this post-infarction model of CHF, the contractile deficit was voltage dependent and the gain of excitation-contraction coupling was selectively depressed for contractions initiated negative to -40 mV.


Subject(s)
Heart Failure/physiopathology , Myocardial Contraction/physiology , Myocardial Infarction/physiopathology , Adrenergic beta-Agonists/pharmacology , Animals , Calcium/metabolism , Echocardiography/methods , Heart Failure/etiology , Isoproterenol/pharmacology , Male , Myocardial Contraction/drug effects , Myocardial Infarction/complications , Myocytes, Cardiac/physiology , Papillary Muscles/physiopathology , Patch-Clamp Techniques , Rats , Rats, Wistar , Sarcoplasmic Reticulum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...