Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(23): 16120-16140, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37988652

ABSTRACT

B3GNT2 is responsible for elongation of cell surface long-chain polylactosamine, which influences the regulation of the immune response, making it an attractive target for immunomodulation. In the development of amide containing B3GNT2 inhibitors guided by structure-based drug design, imidazolones were found to successfully serve as amide bioisosteres. This novel imidazolone isosteric strategy alleviated torsional strain of the amide bond on binding to B3GNT2 and improved potency, isoform selectivity, as well as certain physicochemical and pharmacokinetic properties. Herein, we present the synthesis, SAR, X-ray cocrystal structures, and in vivo PK properties of imidazol-4-ones in the context of B3GNT2 inhibition.


Subject(s)
Amides , N-Acetylglucosaminyltransferases , Amides/pharmacology , Amides/chemistry , N-Acetylglucosaminyltransferases/metabolism , Drug Design , Structure-Activity Relationship
2.
Org Lett ; 22(6): 2113-2117, 2020 03 20.
Article in English | MEDLINE | ID: mdl-31859518

ABSTRACT

Experimental and computational studies of the unexpected racemization of enantiopure fused cyclopropyl isoxazolines are reported. These studies offer insights into the mechanism of racemization, quantify the position of the transition state on the dipolar-diradical continuum, and establish a relationship between the structure and stability of this class of compounds. Experimental and computed energy barriers for racemization are also presented.

3.
J Chem Phys ; 144(18): 184101, 2016 May 14.
Article in English | MEDLINE | ID: mdl-27179465

ABSTRACT

Reaction path optimization is being used more frequently as an alternative to the standard practice of locating a transition state and following the path downhill. The Variational Reaction Coordinate (VRC) method was proposed as an alternative to chain-of-states methods like nudged elastic band and string method. The VRC method represents the path using a linear expansion of continuous basis functions, allowing the path to be optimized variationally by updating the expansion coefficients to minimize the line integral of the potential energy gradient norm, referred to as the Variational Reaction Energy (VRE) of the path. When constraints are used to control the spacing of basis functions and to couple the minimization of the VRE with the optimization of one or more individual points along the path (representing transition states and intermediates), an approximate path as well as the converged geometries of transition states and intermediates along the path are determined in only a few iterations. This algorithmic efficiency comes at a high per-iteration cost due to numerical integration of the VRE derivatives. In the present work, methods for incorporating redundant internal coordinates and potential energy surface interpolation into the VRC method are described. With these methods, the per-iteration cost, in terms of the number of potential energy surface evaluations, of the VRC method is reduced while the high algorithmic efficiency is maintained.

4.
J Comput Chem ; 36(15): 1157-66, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25847703

ABSTRACT

Optimization of a transition state typically requires both a good initial guess of the molecular structure and one or more computationally demanding Hessian calculations to converge reliably. Often, the transition state being optimized corresponds to the barrier in a chemical reaction where bonds are being broken and formed. Utilizing the geometries and bonding information for reactants and products, an algorithm is outlined to reliably interpolate an initial guess for the transition state geometry. Additionally, the change in bonding is also used to increase the reliability of transition state optimizations that utilize approximate and updated Hessian information. These methods are described and compared against standard transition state optimization methods.

5.
J Chem Phys ; 143(24): 244101, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26723645

ABSTRACT

The development of algorithms to optimize reaction pathways between reactants and products is an active area of study. Existing algorithms typically describe the path as a discrete series of images (chain of states) which are moved downhill toward the path, using various reparameterization schemes, constraints, or fictitious forces to maintain a uniform description of the reaction path. The Variational Reaction Coordinate (VRC) method is a novel approach that finds the reaction path by minimizing the variational reaction energy (VRE) of Quapp and Bofill. The VRE is the line integral of the gradient norm along a path between reactants and products and minimization of VRE has been shown to yield the steepest descent reaction path. In the VRC method, we represent the reaction path by a linear expansion in a set of continuous basis functions and find the optimized path by minimizing the VRE with respect to the linear expansion coefficients. Improved convergence is obtained by applying constraints to the spacing of the basis functions and coupling the minimization of the VRE to the minimization of one or more points along the path that correspond to intermediates and transition states. The VRC method is demonstrated by optimizing the reaction path for the Müller-Brown surface and by finding a reaction path passing through 5 transition states and 4 intermediates for a 10 atom Lennard-Jones cluster.

SELECTION OF CITATIONS
SEARCH DETAIL
...