Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-33218091

ABSTRACT

The first case of the coronavirus disease 2019 (COVID-19), the novel contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported in Wuhan, China in December 2019 [...].


Subject(s)
Air Microbiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Hospitals , Infection Control , Nursing Homes , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2
2.
J Air Waste Manag Assoc ; 68(11): 1175-1189, 2018 11.
Article in English | MEDLINE | ID: mdl-29889623

ABSTRACT

Understanding nitrogen oxides (NOx = NO + NO2) measurement techniques is important as air-quality standards become more stringent, important sources change, and instrumentation develops. NOx observations are compared in two environments: source testing from the combustion of Southwestern biomass fuels, and urban, ambient NOx. The latter occurred in the urban core of Albuquerque, NM, at an EPA NCORE site during February-March 2017, a relatively clean photochemical environment with ozone (O3) <60 ppb for all but 6 hr. We compare two techniques used to measure NOx in biomass smoke during biomass burning source testing: light absorption at 405 nm and a traditional chemiluminescence monitor. Two additional oxides of nitrogen techniques were added in urban measurements: a cavity attenuated phase shift instrument for direct NO2, and the NOy chemiluminescence instrument (conversion of NOy to NO by molybdenum catalyst). We find agreement similar to laboratory standards for NOx, NO2, and NO comparing all four instruments (R2 > 0.97, slopes between 0.95 and 1.01, intercepts < 2 ppb for 1-hr averages) in the slowly varying ambient setting. Little evidence for significant interferences in NO2 measurements was observed in comparing techniques in late-winter urban Albuquerque. This was also confirmed by negligible NOz contributions as measured with an NOy instrument. For the rapidly varying (1-min) higher NOx concentrations in biomass smoke source testing, larger variability characterized chemiluminescence and absorption instruments. Differences between the two instruments were both positive and negative and occurred for total NOx, NO, and NO2. Nonetheless, integrating the NOx signals over an entire burn experiment and comparing 95 combustion experiments, showed little evidence for large systematic influences of possible interfering species biasing the methods. For concentrations of <2 ppm, a comparison of burn integrated NOx, NO2, and NO yielded slopes of 0.94 to 0.96, R2 of 0.83 to 0.93, and intercepts of 8 to 25 ppb. We attribute the latter, at least in part, to significant noise particularly at low NOx concentrations, resulting from short averaging times during highly dynamic lab burns. Discrepancies between instruments as indicated by the intercepts urge caution with oxides of nitrogen measurements at concentrations <50 ppb for rapidly changing conditions. Implications: Multiple NOx measurement methods were employed to measure NOx concentrations at an EPA NCORE site in Albuquerque, NM, and in smoke produced by the combustion of Southwestern biomass fuels. Agreement shown during intercomparison of these NOx techniques indicated little evidence of significant interfering species biasing the methods in these two environments. Instrument agreement is important to understand for accurately characterizing ambient NOx conditions in a range of environments.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Fires , Nitrogen Oxides/analysis , Smoke/analysis , Biomass , Cities , New Mexico
3.
Anal Chem ; 82(19): 7929-34, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20822160

ABSTRACT

A new instrument for monitoring atmospheric CO(2) has been developed based on the measurement of the speed of sound in air. The instrument uses a selective scrubber to yield highly precise and accurate measurements of CO(2) mixing ratios at ambient concentrations. The instrument has a precision of 0.3 ppmv (1σ) with a signal that is independent of pressure and requires a flow rate of only 30 mL/min. Laboratory measurements of atmospheric CO(2) showed excellent agreement with values obtained by nondispersive infrared absorption. The instrument has the advantage of collecting continuous, high-precision data every 25 s and can be modified for vertical profiling studies using kites, balloons, or light aircraft for the purpose of measuring landscape-scale fluxes.

4.
Anal Chem ; 82(19): 7924-7928, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-21461365

ABSTRACT

A new portable instrument has been developed that offers rapid detection of ozone at the ppb level for personal exposure monitoring. The Personal Ozone Monitor is based on the EPA Federal Reference Method of UV absorbance and has the advantage of being small (10 × 7.6 × 3.8 cm), light-weight (0.3 kg), low power (2.9 watts), and battery-operated. The instrument can be worn by an individual during normal daily activities because it is unaffected by humidity, physical orientation, temperature, and vibration. In order to eliminate any significant interference from water vapor, Nafion(®) tubing was installed before the detection cell, and the optical path was lined with quartz. A precision of 1.5 ppbv and limit of detection of 4.5 ppbv (S/N = 3) was demonstrated with the instrument making measurements every 10 seconds.

5.
Nat Mater ; 7(1): 52-6, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17965717

ABSTRACT

Clinical and field-portable diagnostic devices require the detection of atto- to zeptomoles of biological molecules rapidly, easily and at low cost, with stringent requirements in terms of robustness and reliability. Though a number of creative approaches to this difficult problem have been reported, numerous unmet needs remain in the marketplace, particularly in resource-poor settings. Using rational materials design, we investigated harnessing the amplification inherent in a radical chain polymerization reaction to detect molecular recognition. Polymerization-based amplification is shown to yield a macroscopically observable polymer, easily visible to the unaided eye, as a result of as few as approximately 1,000 recognition events (10 zeptomoles). Design and synthesis of a dual-functional macromolecule that is capable both of selective recognition and of initiating a polymerization reaction was central to obtaining high sensitivity and eliminating the need for any detection equipment. Herein, we detail the design criteria that were used and compare our findings with those obtained using enzymatic amplification. Most excitingly, this new approach is general in that it is readily adaptable to facile detection at very low levels of specific biological interactions of any kind.


Subject(s)
Biomedical Engineering , Polymers/chemistry , Biocompatible Materials , Models, Molecular , Polymers/metabolism
6.
Environ Sci Technol ; 40(20): 6361-7, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-17120566

ABSTRACT

A water vapor interference in ozone measurements by UV absorption was investigated using four different ozone monitors (TEI models 49 and 49C, Dasibi model 1003-AH, and a 2B Technologies model 202 prototype). In the extreme case of step changes between 0 and 90% relative humidity (RH), a large interference in the range of tens to hundreds of ppbv was found for all instruments tested, with the magnitude and sign depending on the manufacturer and model. Considering that water vapor does not absorb at the wavelength of the Hg lamp (253.7 nm) used in these instruments, another explanation is required. Based on experimental evidence and theoretical considerations, we conclude that the water vapor interference is caused by humidity effects on the transmission of uncollimated UV light through the detection cell. The ozone scrubber acts as a water reservoir, either adding or removing water from the air sample, thereby modulating the detector signal and producing a positive or negative offset. It was found for the 2B Technologies ozone monitor that use of a 1-m length of Nafion tubing just prior to the entrance to the detection cell reduces the water vapor interference to negligible levels (+/- 2 ppbv for step changes between 0 and 90% RH) while quantitatively passing ozone.


Subject(s)
Ozone/analysis , Spectrophotometry, Ultraviolet/methods , Water/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Reproducibility of Results , Spectrophotometry, Ultraviolet/instrumentation
7.
Environ Sci Technol ; 38(13): 3683-8, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15296321

ABSTRACT

Carbon dioxide is the most important greenhouse gas other than water vapor, and its modulation by the biosphere is of fundamental importance to our understanding of global climate change. We have developed a new technique for vertical profiling of CO2 and meteorological parameters through the atmospheric boundary layer and well into the free troposphere. Vertical profiling of CO2 mixing ratios allows estimates of landscape-scale fluxes characteristic of approximately100 km2 of an ecosystem. The method makes use of a powered parachute as a platform and a new Tedlar bag air sampling technique. Air samples are returned to the ground where measurements of CO2 mixing ratios are made with high precision (< or =0.1%) and accuracy (< or =0.1%) using a conventional nondispersive infrared analyzer. Laboratory studies are described that characterize the accuracy and precision of the bag sampling technique and that measure the diffusion coefficient of CO2 through the Tedlar bag wall. The technique has been applied in field studies in the proximity of two AmeriFlux sites, and results are compared with tower measurements of CO2.


Subject(s)
Atmosphere/analysis , Carbon Dioxide/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Altitude , Spectrophotometry, Infrared , Water/analysis , Weather , Wisconsin
8.
Environ Sci Technol ; 37(5): 1002-7, 2003 Mar 01.
Article in English | MEDLINE | ID: mdl-12666932

ABSTRACT

Solid adsorbents have proven useful for determining the vertical profiles of volatile organic compounds (VOCs) using sampling platforms such as balloons, kites, and light aircraft, and those profiles provide valuable information about the sources, sinks, transformations, and transport of atmospheric VOCs. One of the largest contributions to error in VOC concentrations is the estimation of the volume of air sampled on the adsorbent cartridge. These errors arise from different sources, such as variations in pumping flow rates from changes in ambient temperature and pressure with altitude, and decrease in the sampling pump battery power. Another significant source for sampling rate variations are differences in the flow resistance of individual sampling cartridges. To improve the accuracy and precision of VOC measurements, the use of ambient chlorofluorocarbons (CFCs) as internal standards was investigated. A multibed solid adsorbent, AirToxic (Supelco), was chosen for its wide sampling range (C3-C12). Analysis was accomplished by thermal desorption and dual detection GC/FID/ECD, resulting in sensitive and selective detection of both VOCs and CFCs in the same sample. Long-lived chlorinated compounds (CFC-11, CFC-12, CFC-113, CCl4 and CH3CCl3) banned by the Montreal Protocol and subsequent amendments were studied for their ability to predict sample volumes using both ground-based and vertical profiling platforms through the boundary layer and free troposphere. Of these compounds, CFC-113 and CCl4 were found to yield the greatest accuracy and precision for sampling volume determination. Use of ambient CFC-113 and CCl4 as internal standards resulted in accuracy and precision of generally better than 10% for the prediction of sample volumes in ground-, balloon-, and aircraft-based measurements. Consequently, use of CFCs as reference compounds can yield a significant improvement of accuracy and precision for ambient VOC measurements in situations where accurate flow control is troublesome.


Subject(s)
Air Pollutants/analysis , Chlorofluorocarbons/analysis , Adsorption , Organic Chemicals/analysis , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Volatilization
9.
J Chromatogr A ; 958(1-2): 219-29, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-12134819

ABSTRACT

Water vapor can be a significant interference in the analysis of air for non-methane volatile organic compounds (NMVOCs) using solid-adsorbent sampling techniques. The adsorbent materials used in sampling cartridges have different hydrophobic characteristics, and it is therefore necessary to characterize solid-adsorbent cartridges over a wide range of humidity. Controlled humidity experiments were performed to assess the extent of water vapor interference when samples are collected onto AirToxics solid-adsorbent cartridges. It was found that elevating the temperature of the cartridge to 10 degrees C above the temperature of the air sample greatly reduced water vapor adsorption and interferences and resulted in > or = 90% recovery of NMVOCs, biogenic VOCs and chlorofluorocarbons. Similar collection efficiencies were obtained at ambient temperature by reducing the relative humidity to > or = 60% in the sample by dilution with dry, scrubbed ambient air. A procedure also was developed and optimized for dry-purging cartridges prior to analysis. However, under optimized conditions, significant losses of C3-C5 compounds still occurred under highly humid conditions. It was determined that these losses were due to reduced retention during sampling rather than loss during the dry purge procedure. The dry purge method was shown to be adequate at high humidities for sampling NMVOCs with retention indices greater than 500.


Subject(s)
Organic Chemicals/analysis , Adsorption , Volatilization , Water/chemistry
10.
J Org Chem ; 61(8): 2657-2663, 1996 Apr 19.
Article in English | MEDLINE | ID: mdl-11667095

ABSTRACT

The kinetics of the imidazole-catalyzed decomposition of bis(2,4,6-trichlorophenyl) oxalate (TCPO) and bis(2,4-dinitrophenyl) oxalate (DNPO) was investigated by the stopped-flow technique. Pseudo-first-order rate constants were determined as a function imidazole concentration in the temperature range 6-45 degrees C by fitting the temporal changes in absorbance throughout the 245 to 345 nm wavelength range for TCPO and at 420 nm for DNPO. The reaction proceeds by release of two molecules of substituted phenol and formation of 1,1'-oxalyldiimidazole (ODI) for both esters. The identity of ODI was confirmed in the reaction of imidazole with TCPO by its UV absorbance spectrum and (13)C-NMR spectrum. The reaction of imidazole with TCPO has a second-order dependence on imidazole concentration and an observed negative activation energy of -6.2 +/- 0.3 kJ/mol, whereas the DNPO reaction has a first-order dependence on imidazole concentration and an observed positive activation energy of 12.0 +/- 0.6 kJ/mol. The differences in the temperature dependence and order of the reaction with respect to imidazole for the two oxalate esters are explained by a shift in the rate-determining step from addition to the acyl group for DNPO to imidazole-catalyzed release of the phenol leaving group for TCPO. These kinetics results are useful in interpreting the initial reaction steps in peroxyoxalate chemiluminescence.

SELECTION OF CITATIONS
SEARCH DETAIL
...