Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Thromb Haemost ; 86(4): 959-72, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11686353

ABSTRACT

Human tissue factor pathway inhibitor (TFPI) is a modular protein comprised of three Kunitz type domains flanked by peptide segments that are less structured. The sequential order of the elements are: an N-terminal acidic region followed by the first Kunitz domain (K1), a linker region, a second Kunitz domain (K2), a second linker region, the third Kunitz domain (K3), and the C-terminal basic region. The K1 domain inhibits factor VIIa complexed to tissue factor (TF) while the K2 domain inhibits factor Xa. No direct protease inhibiting functions have been demonstrated for the K3 domain. Importantly, the Xa-TFPI complex is a much more potent inhibitor of the VIIa-TF than TFPI by itself. Furthermore, the C-terminal basic region of TFPI is required for rapid physiologic inhibition of coagulation and is needed for the inhibition of smooth muscle cell proliferation. Although a number of additional targets for attachment have been reported, the C-terminal basic region appears to play an important role in binding of TFPI to cell surfaces. A primary site of TFPI synthesis is endothelium and the endothelium-bound TFPI contributes to the antithrombotic potential of the vascular endothelium. Further, increased levels of plasma TFPI under septic conditions may represent endothelial dysfunction. We have proposed that the extravascular cells that synthesize TF also synthesize TFPI providing dual components necessary for the regulation of clotting in their microenvironment. Like the TF synthesis in these cells is augmented by serum, so is the case with the TFPI gene expression. TFPI gene knock out mice reveal embryonic lethality suggesting a possible role of this protein in early development. Since TF-induced coagulation is thought to play a significant role in many disease states, including disseminated intravascular clotting, sepsis, acute lung injury and cancer, recombinant TFPI may be a beneficial therapeutic agent in these disease states to attenuate pathologic clotting. The purpose of this review is to outline recent developments in the field related to the structural specificity and biology of TFPI.


Subject(s)
Lipoproteins , Acute Disease , Amino Acid Sequence , Amino Acids/chemistry , Antiphospholipid Syndrome/blood , Blood Coagulation/physiology , Cardiovascular Diseases/blood , Endothelium, Vascular/metabolism , Humans , Lipoproteins/chemistry , Lipoproteins/genetics , Lipoproteins/physiology , Lipoproteins/therapeutic use , Lung Diseases/blood , Models, Biological , Models, Molecular , Molecular Sequence Data , Neoplasm Metastasis , Neoplasms/blood , Protein Conformation , Protein Structure, Tertiary , Sepsis/blood , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship , Thrombophilia/blood , Thrombophilia/drug therapy , Thromboplastin/physiology
2.
Protein Eng ; 13(6): 397-405, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10877850

ABSTRACT

Human stromelysin-1 is a member of the matrix metalloproteinase (MMP) family of enzymes. The active site glutamic acid of the MMPs is conserved throughout the family and plays a pivotal role in the catalytic mechanism. The structural and functional consequences of a glutamate to glutamine substitution in the active site of stromelysin-1 were investigated in this study. In contrast to the wild-type enzyme, the glutamine-substituted mutant was not active in a zymogram assay where gelatin was the substrate, was not activated by organomercurials and showed no activity against a peptide substrate. The glutamine-substituted mutant did, however, bind to TIMP-1, the tissue inhibitor of metalloproteinases, after cleavage of the propeptide with trypsin. A second construct containing the glutamine substitution but lacking the propeptide was also inactive in the proteolysis assays and capable of TIMP-1 binding. X-ray structures of the wild-type and mutant proteins complexed with the propeptide-based inhibitor Ro-26-2812 were solved and in both structures the inhibitor binds in an orientation the reverse of that of the propeptide in the pro-form of the enzyme. The inhibitor makes no specific interactions with the active site glutamate and a comparison of the wild-type and mutant structures revealed no major structural changes resulting from the glutamate to glutamine substitution.


Subject(s)
Amino Acid Substitution/genetics , Matrix Metalloproteinase 3/chemistry , Matrix Metalloproteinase 3/genetics , Models, Molecular , Aminobiphenyl Compounds/pharmacology , Binding Sites/genetics , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Gelatin/chemistry , HeLa Cells , Humans , Matrix Metalloproteinase 3/biosynthesis , Matrix Metalloproteinase Inhibitors , Mutagenesis, Site-Directed , Protein Binding/physiology , Protein Structure, Tertiary , Structure-Activity Relationship , Tissue Inhibitor of Metalloproteinase-1/chemistry
3.
Protein Sci ; 8(10): 2010-8, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10548046

ABSTRACT

Short chain L-3-hydroxyacyl CoA dehydrogenase (SCHAD) is a soluble dimeric enzyme critical for oxidative metabolism of fatty acids. Its primary sequence has been reported to be conserved across numerous tissues and species with the notable exception of the pig heart homologue. Preliminary efforts to solve the crystal structure of the dimeric pig heart SCHAD suggested the unprecedented occurrence of three enzyme subunits within the asymmetric unit, a phenomenon that was thought to have hampered refinement of the initial chain tracing. The recently solved crystal coordinates of human heart SCHAD facilitated a molecular replacement solution to the pig heart SCHAD data. Refinement of the model, in conjunction with the nucleotide sequence for pig heart SCHAD determined in this paper, has demonstrated that the previously published pig heart SCHAD sequence was incorrect. Presented here are the corrected amino acid sequence and the high resolution crystal structure determined for pig heart SCHAD complexed with its NAD+ cofactor (2.8 A; R(cryst) = 22.4%, R(free) = 28.8%). In addition, the peculiar phenomenon of a dimeric enzyme crystallizing with three subunits contained in the asymmetric unit is described.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/chemistry , Myocardium/enzymology , Amino Acid Sequence , Animals , Base Sequence , Crystallography, X-Ray , DNA Primers , Humans , Models, Molecular , Molecular Sequence Data , Muscle, Smooth/enzymology , Protein Conformation , Sequence Homology, Amino Acid , Swine
5.
Biochemistry ; 37(22): 7907-12, 1998 Jun 02.
Article in English | MEDLINE | ID: mdl-9609683

ABSTRACT

The rat protein farnesyltransferase crystal structure has been solved by multiple isomorphous replacement methods at a resolution of 2.75 A. The three-dimensional structure, together with recent data on the effects of several mutations, led us to propose a model for substrate binding which differs from the model presented by Park et al. based on their independent structure determination [Park, H. -W., Boduluri, S. R., Moomaw, J. F., Casey, P. J., and Beese, L. S. (1997) Science 275, 1800-1804]. Both farnesyl diphosphate and peptide substrates can be accommodated in the hydrophobic active-site barrel, with the sole charged residue inside the barrel, Arg202 of the beta-subunit, forming a salt bridge with the negatively charged carboxy terminus of peptide substrates. Our proposals are based in part on the observation of electron density in the active site which can be modeled as bound farnesyl diphosphate carried through the enzyme purification. In addition, our model explains in structural terms the results of mutational studies which have identified several residues critical for substrate specificity and catalysis.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Binding Sites/genetics , Conserved Sequence , Crystallization , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Polyisoprenyl Phosphates/metabolism , Protein Structure, Secondary , Sesquiterpenes , Substrate Specificity/genetics
6.
Protein Sci ; 5(11): 2266-75, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8931145

ABSTRACT

The glutamic acid-specific protease from Streptomyces griseus (SGPE) is an 18.4-kDa serine protease with a distinct preference for Glu in the P1 position. Other enzymes characterized by a strong preference for negatively charged residues in the P1 position, e.g., interleukin-1 beta converting enzyme (ICE), use Arg or Lys residues as counterions within the S1 binding site. However, in SGPE, this function is contributed by a His residue (His 213) and two Ser residues (Ser 192 and S216). It is demonstrated that proSGPE is activated autocatalytically and dependent on the presence of a Glu residue in the -1 position. Based on this observation, the importance of the individual S1 residues is evaluated considering that enzymes unable to recognize a Glu in the P1 position will not be activated. Among the residues constituting the S1 binding site, it is demonstrated that His 213 and Ser 192 are essential for recognition of Glu in the P1 position, whereas Ser 216 is less important for catalysis out has an influence on stabilization of the ground state. From the three-dimensional structure, it appears that His 213 is linked to two other His residues (His 199 and His 228), forming a His triad extending from the S1 binding site to the back of the enzyme. This hypothesis has been tested by substitution of His 199 and His 228 with other amino acid residues. The catalytic parameters obtained with the mutant enzymes, as well as the pH dependence, do not support this theory; rather, it appears that His 199 is responsible for orienting His 213 and that His 228 has no function associated with the recognition of Glu in P1.


Subject(s)
Endopeptidases/metabolism , Streptomyces griseus/enzymology , Bacillus subtilis/genetics , Binding Sites , Catalysis , Endopeptidases/chemistry , Endopeptidases/genetics , Genes, Synthetic , Hydrogen-Ion Concentration , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
J Biol Chem ; 270(26): 15523-30, 1995 Jun 30.
Article in English | MEDLINE | ID: mdl-7797546

ABSTRACT

Factor VIIa, in the presence of Ca2+ and tissue factor (TF), initiates the extrinsic pathway of blood coagulation. The light chain (amino acids 1-152) of factor VIIa consists of an N-terminal gamma-carboxyglutamic acid (Gla) domain followed by two epidermal growth factor-like domains, whereas the heavy chain (amino acids 153-406) contains the serine protease domain. In this study, both recombinant factor VIIa (rVIIa) and factor VIIa lacking the Gla domain were found to contain two high-affinity (Kd approximately 150 microM) Ca2+ binding sites. The rVIIa also contained approximately 6-7 low-affinity (Kd approximately 1 mM) Ca(2+)-binding sites. By analogy to other serine proteases, one of the two high affinity Ca(2+)-binding sites in factor VIIa may be formed involving Glu-210 and Glu-220 of the protease domain. In support of this, a synthetic peptide composed of residues 206-242 of factor VIIa bound one Ca2+ with Kd approximately 230 microM; however, Ca2+ binding was observed only in Tris buffer (pH 7.5) containing 1 M NaCl and not in buffer containing 0.1 M NaCl. In both low or high salt +/- Ca2+, the peptide existed as a monomer as determined by sedimentation equilibrium measurements and had no detectable secondary structure as determined by CD measurements. This indicates that subtle changes undetectable by CD may occur in the conformation of the peptide that favor calcium binding in high salt. In the presence of recombinant TF and 5 mM Ca2+, the peptide inhibited the amidolytic activity of rVIIa toward the synthetic substrate, S-2288. The concentration of the peptide required for half-maximal inhibition was approximately 5-fold higher in the low salt buffer than that in the high salt buffer. From direct binding and competitive inhibition assays of active site-blocked 125I-rVIIa binding to TF, the Kd for peptide-TF interaction was calculated to be approximately 15 microM in the high salt and approximately 55 microM in the low salt buffer containing 5 mM Ca2+. Moreover, as inferred from S-2288 hydrolysis, the Kd for VIIa.TF interaction was approximately 1.5 microM in the absence of Ca2+, and, as inferred from factor X activation studies, it was approximately 10 pM in the presence of Ca2+. Thus, Ca2+ decreases the functional Kd of VIIa.TF interaction approximately 150,000-fold.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Calcium/metabolism , Factor VIIa/metabolism , Serine Endopeptidases/metabolism , Thromboplastin/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cattle , Humans , Molecular Sequence Data , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Serine Endopeptidases/chemistry
8.
Proc Natl Acad Sci U S A ; 91(9): 3574-8, 1994 Apr 26.
Article in English | MEDLINE | ID: mdl-8170949

ABSTRACT

Factor IX consists of a gamma-carboxyglutamic acid-rich domain followed by two epidermal growth factor (EGF)-like domains and the C-terminal protease domain. To delineate the function of EGF1 domain in factor IX, we constructed three mutants: an EGF1 domain-deleted mutant (IX delta EGF1), a point mutant (IXQ50P) with a Gln-50-->Pro change, and a replacement mutant (IXPCEGF1) in which the EGF1 domain of factor IX was replaced by that of protein C. These mutants and wild-type (WT) factor IX (IXWT) were expressed in 293 kidney cells by using pRc/CMV vector. The purified proteins had the same gamma-carboxyglutamic acid content as the normal plasma factor IX (IXNP) and were activated normally by factor XIa-Ca2+. In contrast, IX delta EGF1 could not be activated by factor VIIa-tissue factor-Ca2+, and the activation of IXPCEGF1 in this system was markedly slow; however, IXQ50P was activated at a normal rate. In additional studies, both IXWT and IX delta EGF1 were rapidly converted to their respective IX alpha forms by factor Xa-phospholipid-Ca2+. Since this reaction has an absolute requirement for phospholipid, it indicates that the mutants under study are not impaired in their interactions with phospholipid. Relative coagulant activities of factor XIa-activated proteins were IXNP, 100%; IXWT, 75-85%; IX delta EGF1, < or = 1%; IXPCEGF1, < or = 2%; and IXQ50P, 6-10%. We conclude that the EGF1 domain of factor IX is required for its activation by factor VIIa-tissue factor and that the Gln-50 residue is not critical for this activation. Further, the EGF1 domain of factor IX is not essential for phospholipid binding and for its activation by factor XIa. In addition, the low coagulant activities of the activated mutants indicate that the EGF1 domain is also important in factor X activation by factor IXa-factor VIIIa-Ca(2+)-phospholipid complex.


Subject(s)
Factor IX/metabolism , Factor VIIa/metabolism , Factor XIa/metabolism , Thromboplastin/metabolism , 1-Carboxyglutamic Acid/analysis , Calcium/metabolism , Enzyme Activation , Epidermal Growth Factor/chemistry , Factor IX/analysis , Humans , Protein Structure, Tertiary
9.
Biochemistry ; 33(8): 2078-88, 1994 Mar 01.
Article in English | MEDLINE | ID: mdl-8117664

ABSTRACT

The crystal structure of mitochondrial malate dehydrogenase from porcine heart contains four identical subunits in the asymmetric unit of a monoclinic cell. Although the molecule functions as a dimer in solution, it exists as a tetramer with 222 point symmetry in the crystal. The crystallographic refinement was facilitated in the early stages by using weak symmetry restraints and molecular dynamics. The R-factor including X-ray data to 1.83-A resolution was 21.1%. The final root mean square deviation from canonical values is 0.015 A for bond lengths and 3.2 degrees for bond angles. The resulting model of the tetramer includes independent coordinates for each of the four subunits allowing an internal check on the accuracy of the model. The crystalline mitochondrial malate dehydrogenase tetramer has been analyzed to determine the surface areas lost at different subunit-subunit interfaces. The results show that the interface with the largest surface area is the same one found in cytosolic malate dehydrogenase. Each of the subunits contains a bound citrate molecule in the active site permitting the elaboration of a model for substrate binding which agrees with that found for the crystalline enzyme from Escherichia coli. The environment of the N-terminal region of the crystallographic model has been studied because the functional protein is produced from a precursor. This precursor form has an additional 24 residues which are involved in mitochondrial targeting and, possibly, translocation. The crystallographic model of mitochondrial malate dehydrogenase has been compared with its cytosolic counterpart from porcine heart and two prokaryotic enzymes. Small but significant differences have been found in the polar versus nonpolar accessible surface areas between the mitochondrial and cytosolic enzymes. Using least squares methods, four different malate dehydrogenases have been superimposed and their consensus structure has been determined. An amino acid sequence alignment based on the crystallographic structures describes all the conserved positions. The consensus active site of these dicarboxylic acid dehydrogenases is derived from the least squares comparison.


Subject(s)
Malate Dehydrogenase/chemistry , Mitochondria, Heart/enzymology , Oxidoreductases/chemistry , Amino Acid Sequence , Animals , Binding Sites , Citrates/metabolism , Citric Acid , Crystallography, X-Ray , Dicarboxylic Acids/chemistry , Hydrogen-Ion Concentration , Malate Dehydrogenase/metabolism , Molecular Sequence Data , Sequence Homology, Amino Acid , Swine
11.
Biochemistry ; 32(43): 11469-75, 1993 Nov 02.
Article in English | MEDLINE | ID: mdl-8105890

ABSTRACT

Proteases specific for cleavage after acidic residues have been implicated in several disease states, including epidermolysis, inflammation, and viral processing. A serine protease with specificity toward glutamic acid substrates (Glu-SGP) has been crystallized in the presence of a tetrapeptide ligand and its structure determined and refined to an R-factor of 17% at 2.0-A resolution. This structure provides an initial description of the design of proteolytic specificity for negatively charged residues. While the overall fold of Glu-SGP closely resembles that observed in the pancreatic-type serine proteases, stabilization of the negatively charged substrate when bound to this protein appears to involve a more extensive part of the protease than previously observed. The substrate carboxylate is bound to a histidine side chain, His213, which provides the primary electrostatic compensation of the negative charge on the substrate, and to two serine hydroxyls, Ser192 and Ser216. Glu-SGP displays maximum activity at pH 8.3, and assuming normal pKa's, the glutamate side chain and His213 will be negatively charged and neutral, respectively, at this pH. In order for His213 to carry a positive charge at the optimal pH, its pKa will have to be raised by at least two units. An alternative mechanism for substrate charge compensation is suggested that involves a novel histidine triad, His213, His199, and His228, not observed in any other serine protease. The C-terminal alpha-helix, ubiquitous to all pancreatic-type proteases, is directly linked to this histidine triad and may also play a role in substrate stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Histidine/metabolism , Serine Endopeptidases/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Glutamates/metabolism , Glutamic Acid , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Streptomyces griseus/enzymology , Substrate Specificity
12.
Eur J Biochem ; 214(1): 271-9, 1993 May 15.
Article in English | MEDLINE | ID: mdl-7685280

ABSTRACT

Heparin-binding protein (HBP; also known as CAP37 or azurocidin) is a member of the serine proteinase family. Evolution, however, has reverted this protein into a non-proteolytic form by mutation of two of the three residues of the active-site triad. Although proteolytically inactive, the human heparin-binding protein (hHBP) is still capable of binding bovine pancreatic trypsin inhibitor (BPTI). This was demonstrated by affinity chromatography to BPTI immobilized on a solid matrix and by studies on plasmin inhibition kinetics. hHBP competes with plasmin for BPTI and this effect on plasmin inhibition has been analyzed in terms of a kinetic model. A dissociation constant, Kd = 0.1 microM, was found for the interaction between BPTI and hHBP. The hHBP provides an example of a serine proteinase which has lost its catalytic function by reverting residues of the active center while still preserving its capability of specific interactions with Kunitz inhibitors. pHBP, the porcine counterpart to hHBP, on the other hand, was incapable of BPTI binding. The structural basis for the BPTI binding to the human protein and the species difference is discussed in terms of putative three-dimensional structures of the proteins derived by comparative molecular modelling methods.


Subject(s)
Aprotinin/metabolism , Blood Proteins/metabolism , Carrier Proteins , Serine Endopeptidases/metabolism , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides , Blood Proteins/chemistry , Cattle , Fibrinolysin/antagonists & inhibitors , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Serine Endopeptidases/chemistry
13.
Biochemistry ; 32(15): 3913-22, 1993 Apr 20.
Article in English | MEDLINE | ID: mdl-8471603

ABSTRACT

A binary complex of malate dehydrogenase from the thermophilic bacterium Thermus flavus (tMDH) with NADH has been crystallized from poly(ethylene glycol) 3500, pH 8.5, yielding diffraction-quality crystals in space group P2(1)2(1)2(1). The structure was solved at 1.9-A resolution using molecular replacement and refined to an R factor of 15.8% with good geometry. The primary sequence of tMDH is 55% identical to that of cytoplasmic malate dehydrogenase (cMDH) [Birktoft, J. J., Rhodes, G., & Banaszak, L. J. (1989) Biochemistry 28, 6065-6081], and overall their three-dimensional structures are very similar. Like cMDH, tMDH crystallized as a dimer with one coenzyme bound per subunit. The coenzyme binds in the extended conformation, and most of the interactions with enzyme are similar to those in cMDH. In tMDH, small local conformational changes are caused by the replacement of a glutamic acid for the aspartic acid involved in hydrogen bonding to the adenine ribose of NADH. Comparison of tMDH with cMDH reveals that both tMDH subunits more closely resemble the B subunit of cMDH which therefore is the more likely representative of the solution conformation. While cMDH is inactivated at temperatures above about 50 degrees C, tMDH is fully active at 90 degrees C. On the basis of the X-ray crystal structure, a number of factors have been identified which are likely to contribute to the relative thermostability of tMDH compared to cMDH. The most striking of the differences involves the introduction of four ion pairs per monomer. All of these ion pairs are solvent-accessible. Three of these ion pairs are located in the dimer interface, Glu27-Lys31, Glu57-Lys168, and Glu57-Arg229, and one ion pair, Glu275-Arg149, is at the domain interface within each subunit. Additionally, we observe incorporation of additional alanines into alpha-helices of tMDH and, in one instance, incorporation of an aspartate that functions as a counterchange to an alpha-helix dipole. The possible contributions of these and other factors to protein thermostability in tMDH are discussed.


Subject(s)
Malate Dehydrogenase/chemistry , Protein Structure, Secondary , Thermus/enzymology , Amino Acid Sequence , Enzyme Stability , Hot Temperature , Hydrogen Bonding , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , Thermodynamics , X-Ray Diffraction
15.
J Biol Chem ; 268(7): 4656-60, 1993 Mar 05.
Article in English | MEDLINE | ID: mdl-8444839

ABSTRACT

On the basis of the crystal structure of the NAD-dependent cytoplasmic malate dehydrogenase (MDH) and its alignment with NADP-dependent counterparts, the loop region between beta-strand B and alpha-helix C in the dinucleotide-binding fold was predicted as a principal determinant for the coenzyme specificity. Two mutants, EX7 and EX3, of NAD-dependent MDH from Thermus flavus were constructed. In the EX7 mutant, the seven loop amino acids in positions 41-47, Glu-Ile-Pro-Gln-Ala-Met-Lys, were replaced by the corresponding loop residues in the NADP-dependent MDH from chloroplasts, Gly-Ser-Glu-Arg-Ser-Phe-Gln. In the EX3 mutant, Glu-41, Ile-42, and Ala-45 were substituted with the corresponding 3 amino acids in the NADP-dependent chloroplast MDH. In both mutations the coenzyme specificity was altered from NAD to NADP. Especially, the EX7 mutation resulted in a more than 1000-fold improvement in overall catalytic efficiency with NADPH and a 600-fold decrease in the efficiency with NADH as cofactors. Consequently, EX7 mutant was 132 times more efficient with NADPH than NADH without a large decrease in turnover number.


Subject(s)
Coenzymes/metabolism , Malate Dehydrogenase/metabolism , Mutagenesis, Site-Directed , Thermus/enzymology , Amino Acid Sequence , Base Sequence , Kinetics , Malate Dehydrogenase/antagonists & inhibitors , Malate Dehydrogenase/genetics , Models, Molecular , Molecular Sequence Data , NAD/metabolism , Oligonucleotides , Substrate Specificity
17.
Biochemistry ; 32(1): 114-9, 1993 Jan 12.
Article in English | MEDLINE | ID: mdl-8418832

ABSTRACT

Previous studies have identified a putative calcium binding site involving two glutamic acid residues located in the protease domain of coagulation factor IX. Amino acid sequence homology considerations suggest that factor VII (FVII) possesses a similar site involving glutamic acid residues 210 and 220. In the present study, we have constructed site-specific mutants of human factor VII in which Glu-220 has been replaced with either a lysine (E220K FVII) or an alanine (E220A FVII). These mutants were indistinguishable from wild-type factor VII by SDS-PAGE but only possessed 0.1% the coagulant activity of factor VII. Incubation of E220K/E220A FVII with factor Xa resulted in a slower than normal activation rate which eventually yielded a two-chain factor VIIa molecule possessing a coagulant activity of approximately 10% that of wild-type rFVIIa. Amidolytic activity measurements indicated that E220K/E220A FVIIa, unlike wild-type factor VIIa, possessed no measurable amidolytic activity toward the chromogenic substrate S-2288, even at high CaCl2 concentrations. Addition of tissue factor apoprotein, however, induced the amidolytic activity of the mutant molecule to a level 30% of that observed for wild-type factor VIIa. This tissue factor dependent enhancement of E220K/E220A FVIIa amidolytic activity was calcium dependent and required a CaCl2 concentration in excess of 5 mM for maximal rate enhancement. This was in sharp contrast to wild-type factor VIIa which required CaCl2 levels of 0.5 mM for maximal enhancement of tissue factor dependent amidolytic activity. Competition binding experiments suggest that the decrease in amidolytic and coagulant activity observed in the factor VII mutants is a direct result of impaired tissue factor binding.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Calcium/metabolism , Endopeptidases/metabolism , Factor VII/metabolism , Thromboplastin/metabolism , Amides/metabolism , Amino Acid Sequence , Animals , Binding Sites , Blood Coagulation , Calcium/pharmacology , Cell Line , Cricetinae , Factor VII/chemistry , Factor VIIa/metabolism , Humans , Kidney , Molecular Sequence Data , Mutagenesis , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Terbium
18.
Biochemistry ; 31(15): 3852-61, 1992 Apr 21.
Article in English | MEDLINE | ID: mdl-1314651

ABSTRACT

Tissue plasminogen activator (t-PA) is an exceptional serine protease, because unlike most other serine protease zymogens single-chain tissue plasminogen activator (sct-PA) possesses a substantial amount of proteolytic activity. The unusual reaction of sct-PA afforded the opportunity to directly compare the active site environment of sct-PA and two-chain tissue plasminogen activator (tct-PA) in solution through the application of a series of nitroxide spin labels and fluorophores. These labels, which have been previously shown to covalently label the catalytic serine of other serine proteases, inactivated both sct-PA and tct-PA. The labels can be divided into two classes: those which form tetrahedral complexes (sulfonates) and those which form trigonal complexes (anthranilates). Those which formed tetrahedral complexes were found to be insensitive to structural differences between sct-PA and tct-PA at the active site. In contrast, those which formed trigonal complexes could differentiate and monitor the sct-PA to tct-PA conversion by fluorescence spectroscopy. Models of the structure of sct-PA and tct-PA were constructed on the basis of the known X-ray structures of other serine protease zymogen and active enzyme forms. One of the nitroxide spin labels was modeled into the sct-PA and tct-PA structures in two possible orientations, both of which could be sensitive to structural differences between sct-PA and tct-PA. These models formed the structural rationale used to explain the results obtained with the "tetrahedral" and "trigonal" probes, as well as to offer a possible explanation for the unique reactivity of sct-PA.


Subject(s)
Tissue Plasminogen Activator/metabolism , Amino Acid Sequence , Electron Spin Resonance Spectroscopy , Hydrolysis , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Conformation , Spectrometry, Fluorescence , Spin Labels
19.
Blood ; 79(5): 1225-32, 1992 Mar 01.
Article in English | MEDLINE | ID: mdl-1346975

ABSTRACT

Factor IX is a multidomain protein and is the proenzyme of a serine protease, factor IXa, essential for hemostasis. In this report, we describe the molecular basis of hemophilia B (deficiency of factor IX activity) in five patients who have neither deletions nor rearrangements of the factor IX gene. By enzymatic amplification and sequencing of all exons and promoter regions, the following causative mutation in the protease domain of factor IX was identified in each patient: IXSchmallenberg: nucleotide 31,215G----T, Ser365Ile; IXVarel: nucleotide 31,214A----G, Ser365Gly; IXMechtal: nucleotide 31,211G----C, Asp364His; IXDreihacken: nucleotide 30,864G----A, Arg248Gln; and IXMonschau: nucleotide 30,855A----T, Glu245Val. In IXVarel, nucleotide 31,213T was also replaced by C, which results in a silent mutation (GAT----GAC) at Asp-364. Thus, this patient has a double base-pair substitution of TA to CG at nucleotides 31,213 and 31,214 but only a single amino acid change of Ser-365 to Gly. This patient also developed an antibody to factor IX during replacement therapy, which suggests that deletion of the factor IX gene is not necessary for development of the antibody in hemophilia B patients. The levels of plasma factor IX antigen in the patients ranged from 40% to 100% except for IXDreihacken (Arg248Gln), in which case it was approximately 4% of normal. The Ser365Gly and Ser365Ile mutants are nonfunctional because of lack of the active site serine residue. Mutant Asp364His is inactive because it cannot form the hydrogen bond between the carboxylate group of Asp-364 and the alpha-amino group of Val-181 generated after activation. As observed in other homologous serine proteases, this hydrogen bond is essential for maintaining the correct active site conformation in normal factor IXa (IXaN). Purified Arg248Gln had approximately 41% and Glu245Val had approximately 17% of the activity of normal factor IX (IXN) in a partial thromboplastin time (aPTT) assay. In immunodot blot experiments, the isolated Glu245Val mutant did and the Arg248Gln mutant did not bind to an anti-IXN monoclonal antibody that has been shown previously to inhibit the interaction of factor VIIIa with factor IXaN. We have recently shown that a high-affinity calcium binding site exists in the protease domain of IXN; among the proposed Ca(2+)-binding ligands is the carboxyl group of Glu-245. Further, a part of the epitope for the above antibody was shown to be contained in the 231 to 265 residue segment of factor IX.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Factor IX/genetics , Hemophilia B/genetics , Mutation , Serine Endopeptidases/chemistry , Adult , Arginine , Binding Sites , Calcium/metabolism , Exons , Factor IX/metabolism , Glutamates , Glutamic Acid , Glutamine , Humans , Hydrogen Bonding , Middle Aged , Polymerase Chain Reaction , Promoter Regions, Genetic , Protein Conformation , Valine
20.
Proc Natl Acad Sci U S A ; 89(1): 152-6, 1992 Jan 01.
Article in English | MEDLINE | ID: mdl-1729682

ABSTRACT

The Fab fragment of a monoclonal antibody (mAb) reactive to the N-terminal half (residues 180-310) of the protease domain of human factor IX has been previously shown to inhibit the binding of factor IXa to its cofactor, factor VIIIa. These data suggested that this segment of factor IXa may participate in binding to factor VIIIa. We now report that the binding rate (kon) of the mAb is 3-fold higher in the presence of Ca2+ than in its absence for both factors IX and IXa; the half-maximal effect was observed at approximately 300 microM Ca2+. Furthermore, the off rate (koff) of the mAb is 10-fold higher for factor IXa than for factor IX with or without Ca2+. Moreover, like the kon for mAb binding, the incorporation of dansyl-Glu-Gly-Arg chloromethyl ketone (dEGR-CK) into factor IXa was approximately 3 times faster in the presence of Ca2+ than in its absence. Since steric factors govern the kon and the strength of noncovalent interactions governs the koff, the data indicate that the region of factor IX at residues 180-310 undergoes two separate conformational changes before expression of its biologic activity: one upon Ca2+ binding and the other upon zymogen activation. Furthermore, the dEGF-CK incorporation data suggest that both conformational changes also affect the active site residues. Analyses of the known three-dimensional structures of serine proteases indicate that in human factor IX a high-affinity Ca(2+)-binding site may be formed by the carboxyl groups of glutamates 235 and 245 and by the main chain carbonyl oxygens of residues 237 and 240. In support of this conclusion, a synthetic peptide including residues 231-265 was shown to bind Ca2+ with a Kd of approximately 500 microM. This peptide also bound to the mAb, although with approximately 500-fold reduced affinity. Moreover, like factor IX, the peptide bound to the mAb more strongly (approximately 3-fold) in the presence of Ca2+ than in its absence. Thus, it appears that a part of the epitope for the mAb described above is contained in the proposed Ca(2+)-binding site in the protease domain of human factor IX. This proposed site is analogous to the Ca(2+)-binding site in trypsin and elastase, and it may be involved in binding factor IXa to factor VIIIa.


Subject(s)
Factor IX/physiology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antibody Affinity , Binding Sites , Calcium/metabolism , Enzyme Activation , Enzyme Precursors/metabolism , Factor IX/ultrastructure , Humans , Immunologic Techniques , In Vitro Techniques , Models, Molecular , Molecular Sequence Data , Motion , Peptides/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...