Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37662298

ABSTRACT

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

2.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37503284

ABSTRACT

Targeting deep brain structures during electrophysiology and injections requires intensive training and expertise. Even with experience, researchers often can't be certain that a probe is placed precisely in a target location and this complexity scales with the number of simultaneous probes used in an experiment. Here, we present Pinpoint, open-source software that allows for interactive exploration of stereotaxic insertion plans. Once an insertion plan is created, Pinpoint allows users to save these online and share them with collaborators. 3D modeling tools allow users to explore their insertions alongside rig and implant hardware and ensure plans are physically possible. Probes in Pinpoint can be linked to electronic micro-manipulators allowing real-time visualization of current brain region targets alongside neural data. In addition, Pinpoint can control manipulators to automate and parallelize the insertion process. Compared to previously available software, Pinpoint's easy access through web browsers, extensive features, and real-time experiment integration enable more efficient and reproducible recordings.

3.
Elife ; 122023 05 15.
Article in English | MEDLINE | ID: mdl-37184221

ABSTRACT

Attention allows us to focus sensory processing on behaviorally relevant aspects of the visual world. One potential mechanism of attention is a change in the gain of sensory responses. However, changing gain at early stages could have multiple downstream consequences for visual processing. Which, if any, of these effects can account for the benefits of attention for detection and discrimination? Using a model of primate visual cortex we document how a Gaussian-shaped gain modulation results in changes to spatial tuning properties. Forcing the model to use only these changes failed to produce any benefit in task performance. Instead, we found that gain alone was both necessary and sufficient to explain category detection and discrimination during attention. Our results show how gain can give rise to changes in receptive fields which are not necessary for enhancing task performance.


Subject(s)
Task Performance and Analysis , Visual Cortex , Animals , Attention/physiology , Visual Perception/physiology , Visual Cortex/physiology , Primates , Photic Stimulation/methods
4.
Nat Commun ; 10(1): 3500, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375665

ABSTRACT

Attention can both enhance and suppress cortical sensory representations. However, changing sensory representations can also be detrimental to behavior. Behavioral consequences can be avoided by flexibly changing sensory readout, while leaving the representations unchanged. Here, we asked human observers to attend to and report about either one of two features which control the visibility of motion while making concurrent measurements of cortical activity with BOLD imaging (fMRI). We extend a well-established linking model to account for the relationship between these measurements and find that changes in sensory representation during directed attention are insufficient to explain perceptual reports. Adding a flexible downstream readout is necessary to best explain our data. Such a model implies that observers should be able to recover information about ignored features, a prediction which we confirm behaviorally. Thus, flexible readout is a critical component of the cortical implementation of human adaptive behavior.


Subject(s)
Adaptation, Psychological/physiology , Attention/physiology , Cerebral Cortex/physiology , Visual Perception/physiology , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Eye Movement Measurements , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motion , Photic Stimulation , Young Adult
5.
J Neurophysiol ; 120(4): 1824-1839, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29995608

ABSTRACT

Despite the central use of motion visibility to reveal the neural basis of perception, perceptual decision making, and sensory inference there exists no comprehensive quantitative framework establishing how motion visibility parameters modulate human cortical response. Random-dot motion stimuli can be made less visible by reducing image contrast or motion coherence, or by shortening the stimulus duration. Because each of these manipulations modulates the strength of sensory neural responses they have all been extensively used to reveal cognitive and other nonsensory phenomena such as the influence of priors, attention, and choice-history biases. However, each of these manipulations is thought to influence response in different ways across different cortical regions and a comprehensive study is required to interpret this literature. Here, human participants observed random-dot stimuli varying across a large range of contrast, coherence, and stimulus durations as we measured blood-oxygen-level dependent responses. We developed a framework for modeling these responses that quantifies their functional form and sensitivity across areas. Our framework demonstrates the sensitivity of all visual areas to each parameter, with early visual areas V1-V4 showing more parametric sensitivity to changes in contrast and V3A and the human middle temporal area to coherence. Our results suggest that while motion contrast, coherence, and duration share cortical representation, they are encoded with distinct functional forms and sensitivity. Thus, our quantitative framework serves as a reference for interpretation of the vast perceptual literature manipulating these parameters and shows that different manipulations of visibility will have different effects across human visual cortex and need to be interpreted accordingly. NEW & NOTEWORTHY Manipulations of motion visibility have served as a key tool for understanding the neural basis for visual perception. Here we measured human cortical response to changes in visibility across a comprehensive range of motion visibility parameters and modeled these with a quantitative framework. Our quantitative framework can be used as a reference for linking human cortical response to perception and underscores that different manipulations of motion visibility can have greatly different effects on cortical representation.


Subject(s)
Motion Perception , Visual Cortex/physiology , Adult , Connectome , Female , Humans , Magnetic Resonance Imaging , Male
6.
PLoS One ; 12(9): e0184661, 2017.
Article in English | MEDLINE | ID: mdl-28945803

ABSTRACT

Quality control of MRI is essential for excluding problematic acquisitions and avoiding bias in subsequent image processing and analysis. Visual inspection is subjective and impractical for large scale datasets. Although automated quality assessments have been demonstrated on single-site datasets, it is unclear that solutions can generalize to unseen data acquired at new sites. Here, we introduce the MRI Quality Control tool (MRIQC), a tool for extracting quality measures and fitting a binary (accept/exclude) classifier. Our tool can be run both locally and as a free online service via the OpenNeuro.org portal. The classifier is trained on a publicly available, multi-site dataset (17 sites, N = 1102). We perform model selection evaluating different normalization and feature exclusion approaches aimed at maximizing across-site generalization and estimate an accuracy of 76%±13% on new sites, using leave-one-site-out cross-validation. We confirm that result on a held-out dataset (2 sites, N = 265) also obtaining a 76% accuracy. Even though the performance of the trained classifier is statistically above chance, we show that it is susceptible to site effects and unable to account for artifacts specific to new sites. MRIQC performs with high accuracy in intra-site prediction, but performance on unseen sites leaves space for improvement which might require more labeled data and new approaches to the between-site variability. Overcoming these limitations is crucial for a more objective quality assessment of neuroimaging data, and to enable the analysis of extremely large and multi-site samples.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Humans , Image Enhancement/methods , Neuroimaging/methods , Observer Variation , Software
7.
Proc Natl Acad Sci U S A ; 113(4): 1080-5, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26668390

ABSTRACT

In humans, spontaneous movements are often preceded by early brain signals. One such signal is the readiness potential (RP) that gradually arises within the last second preceding a movement. An important question is whether people are able to cancel movements after the elicitation of such RPs, and if so until which point in time. Here, subjects played a game where they tried to press a button to earn points in a challenge with a brain-computer interface (BCI) that had been trained to detect their RPs in real time and to emit stop signals. Our data suggest that subjects can still veto a movement even after the onset of the RP. Cancellation of movements was possible if stop signals occurred earlier than 200 ms before movement onset, thus constituting a point of no return.


Subject(s)
Contingent Negative Variation/physiology , Movement , Adult , Brain-Computer Interfaces , Electroencephalography , Electromyography , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...